Näytä suppeat kuvailutiedot

dc.contributor.authorLuisto, Rami
dc.contributor.authorPankka, Pekka
dc.date.accessioned2020-09-14T10:52:23Z
dc.date.available2020-09-14T10:52:23Z
dc.date.issued2020
dc.identifier.citationLuisto, R., & Pankka, P. (2020). Stoïlow's theorem revisited. <i>Expositiones Mathematicae</i>, <i>38</i>(3), 303-318. <a href="https://doi.org/10.1016/j.exmath.2019.04.002" target="_blank">https://doi.org/10.1016/j.exmath.2019.04.002</a>
dc.identifier.otherCONVID_32094174
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71752
dc.description.abstractStoïlow’s theorem from 1928 states that a continuous, open, and light map between surfaces is a discrete map with a discrete branch set. This result implies that such maps between orientable surfaces are locally modeled by power maps z→zk and admit a holomorphic factorization.The purpose of this expository article is to give a proof of this classical theorem having readers in mind that are interested in continuous, open and discrete maps.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesExpositiones Mathematicae
dc.rightsCC BY-NC-ND 4.0
dc.subject.othercontinuous open and light mappings
dc.subject.othercontinuous open and discrete mappings
dc.subject.otherStoilow’s theorem
dc.titleStoïlow's theorem revisited
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202009145850
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange303-318
dc.relation.issn0723-0869
dc.relation.numberinseries3
dc.relation.volume38
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Elsevier GmbH. All rights reserved.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber713998
dc.relation.grantnumber713998
dc.relation.grantnumber288501
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG
dc.subject.ysofunktioteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p18494
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.exmath.2019.04.002
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramERC Starting Granten
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramERC Starting Grantfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationR.L. has been partially supported by a grant of the Finnish Academy of Science and Letters, the Academy of Finland (grant 288501 ‘Geometry of subRiemannian groups’) and by the European Research Council (ERCStarting Grant 713998 GeoMeG ‘Geometry of Metric Groups’). P.P. has been partially supported by the Academy of Finland projects #256228 and #297258.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0