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STOÏLOW’S THEOREM REVISITED

RAMI LUISTO AND PEKKA PANKKA

Abstract. Stöılow’s theorem from 1928 states that a continuous, open,
and light map between surfaces is a discrete map with a discrete branch
set. This result implies that such maps between orientable surfaces
are locally modeled by power maps z 7→ z

k and admit a holomorphic
factorization.

The purpose of this expository article is to give a proof of this classical
theorem having readers in mind that are interested in continuous, open
and discrete maps.

1. Introduction

Stöılow’s classical theorem in [16] states that a continuous, open and light
map between surfaces is a discrete map which has a discrete branch set. In
what follows, we call this theorem Stöılow’s discreteness theorem.

Recall that a continuous map f : X → Y between topological spaces is
light if the pre-image f−1(y) of each point y ∈ Y is totally disconnected, and
discrete if f−1(y) is a discrete subset of X. A continuous map is open if the
image of each open set is an open set. The branch set Bf of a continuous
map f : X → Y is the set of points x ∈ X at which f fails to be a local
homeomorphism.

In [16] Stöılow shows that these maps are locally modeled by power maps
z 7→ zk; see [16, p. 372] for the discussion. This local description indicates a
deep connection between continuous, open and light maps and holomorphic
maps between surfaces. This connection was found by Stöılow [17, p. 120]
and Whyburn [19, Theorem X.5.1, p. 198] and [20, p. 103]: For a continuous,
open and light map f : S → S′ between orientable Riemann surfaces there
exists a Riemann surface S̃ and a homeomorphism h : S → S̃ for which
f ◦ h−1 : S̃ → S′ is a holomorphic map; the Riemann surface S̃ in this
statement is naturally the Riemann surface associated to the map f . The
first edition of [20], published in 1956, does not give this result a specific
name, but already in the second edition from 1964 the result is referred as
Stöılow’s theorem.

In this expository article we discuss the proof of Stöılow’s discreteness the-
orem having readers in mind that are interested in discrete and open maps,
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2 RAMI LUISTO AND PEKKA PANKKA

such as quasiregular maps (see e.g. [15]) or Thurston maps (see e.g. [4]). For
this reason we separate Stöılow’s theorem into two parts: the discreteness
of the map and the discreteness of the branch set.

Theorem 1.1 (Stöılow, 1928). Let Ω be a domain in C and f : Ω → C a
continuous, open and light map. Then f is a discrete map.

Theorem 1.2 (Stöılow, 1928). Let Ω be a domain in C and f : Ω → C a
continuous, open and discrete map. Then Bf is a discrete set.

It is interesting to notice that both results stem from path-lifting argu-
ments. Indeed, after path-lifting results are established, standard applica-
tions of the Jordan curve theorem yield both Theorems 1.1 and 1.2. For
continuous, open and discrete maps, we may use Rickman’s path-lifting the-
orem [14] and for continuous, open and light maps the method of Floyd [7].
Floyd’s method suffices for all our purposes and we recall it in Section 3; see
[11] for a more detailed discussion on path-lifting methods.

Having Theorems 1.1 and 1.2 at our disposal, it is a straightforward
covering-space argument to show that continuous, open and light maps be-
tween surfaces are locally modeled by power maps.

Theorem 1.3 (Stöılow, 1928). Let f : Σ → Σ′ be a continuous, open and
light map between surfaces. For each x ∈ Σ, there exists k ∈ N, a neighbor-
hood U of z, and homeomorphisms ψ : U → D and φ : fU → D for which
ψ(x) = 0, φ(f(x)) = 0, and the diagram

U
f |U

//

ψ
��

fU

φ
��

D
z 7→zk

// D

commutes.

Remark 1.4. For maps between oriented surfaces, we may alternatively state
that there exist orientation-preserving homeomorphisms ψ : U → D and
φ : fU → D for which the local model for f is z 7→ zk, if f is orientation-
preserving, and z 7→ z̄k if f is orientation-reversing; see the proof of Theorem
1.3 in Section 5.

This local version of Stöılow’s discreteness theorem yields the following
global factorization theorem. Indeed, by Theorem 1.3, a continuous, light
and open map f : Σ → S′ induces a conformal structure on Σ making it a
Riemann surface S̃; we refer to [4, Lemma A.10] for a short proof. Thus we

may consider f as a holomorphic map f : S̃ → S′. If the surface Σ a priori
carries a conformal structure, and we consider Σ as a Riemann surface S,
we may take the homeomorphism h in the factorization to be the identity
homeomorphism Σ → Σ.

Theorem (Stöılow’s factorization theorem, 1938). Let f : S → S′ be a
continuous, open and light map between Riemann surfaces. Then there
exists a Riemann surface S̃ and a homeomorphism h : S → S̃ such that
f ◦ h−1 : S̃ → S′ is a holomorphic map.
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Recall that an orientable topological surface carries a conformal structure.
Indeed, by a classical theorem of Radó, every 2-manifold can be triangulated
(see e.g. [12, Theorem 8.3, p. 60] or [1, Section II.8, p. 105]) and every tri-
angulated orientable surface has a conformal structure (see e.g. [1, II.2.5E,
Theorem, p. 127] or [3, Section 2.2, pp. 9–11]). In this way we recover the
interpretation that a continuous, open and light map between orientable sur-
faces is a holomorphic map between Riemann surfaces.

As the authors’ interest for these theorems of Stöılow stems from their role
in the theory of quasiregular maps, we finish this introduction with a related
remark. In the quasiconformal literature Stöılow’s theorem typically refers
to the result that each quasiregular map S → S′ between Riemann surfaces
factors into a holomorphic map S → S′ and a quasiconformal homeomor-
phism S → S. The proof of this result is analytic in its nature and based on
the Beltrami equation. We refer to Astala, Iwaniec, and Martin [2, Theorem
5.5.1] for a detailed discussion.

Acknowledgments. The authors would like to thank Mario Bonk for
his encouragement to write this expository article and for several helpful
remarks. We are also grateful to the anonymous referee for many comments
which considerably improved the exposition.

2. Preliminaries

In the complex plane C we denote the unit ball as D and the unit circle as
S
1. For a path c : [0, 1] → C we set |c| to be the image set of c. An injective

path β : [0, 1] → C is called an arc. For a set A ⊂ C and a radius r > 0 we
denote by B(A, r) the set of points whose distance from A is strictly less
than r.

A set is called totally disconnected if its connected components are points.
A totally disconnected closed set in the plane has topological dimension zero.
We recall this fact as the following lemma; see [10, Section II.2, p. 14] for a
proof.

Lemma 2.1. Let C be a closed and totally disconnected set in C. Then
every point x ∈ C has a neighborhood basis consisting of neighborhoods U
satisfying C ∩ ∂U = ∅.

Let Ω be a planar domain and f : Ω → C be a continuous, open and
light map. A domain U ⊂ Ω is a normal domain (for f) if U is compactly
contained in Ω and ∂fU = f∂U . For each x ∈ Ω and r > 0, we denote
by U(x, f, r) the component of f−1B(f(x), r) containing the point x. The
following lemma shows that domains U(x, f, r) are normal domains of x for
all r > 0 small enough. The proof here is essentially identical to the proof in
the case when f is discrete; see e.g. [18, Lemma 5.1] where the discreteness
is used essentially only to guarantee that Lemma 2.1 holds.

Lemma 2.2. Let Ω be a planar domain, f : Ω → C a continuous, open
and light map, and let x ∈ Ω. Then there exists a radius rx > 0 such that
for all r ≤ rx the domain U(x, f, r) is a normal domain containing x and
fU(x, f, r) = B(f(x), r).
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Proof. Let x ∈ Ω. By Lemma 2.1 there exists a precompact neighborhood
V of x for which ∂V ∩ f−1{f(x)} = ∅. Since ∂V is compact and does not
contain pre-images of x, we may fix rx > 0 for which B(f(x), rx)∩f∂V = ∅.

Let 0 < r < rx and set U := U(x, f, r). We show first that U is a
precompact domain contained in V . Since

f(U ∩ ∂V ) ⊂ fU ∩ f∂V ⊂ B(f(x), r) ∩ f∂V = ∅,

we have U∩∂V = ∅. Since U is a connected neighborhood of x by definition,
we therefore have that U ⊂ V . Thus U is compact as a closed subset of the
compact set V .

We claim next that ∂fU = f∂U . To show the inclusion ∂fU ⊂ f∂U , we
note first that, by precompactness of U and continuity of f , we have that
fU = fU . On the other hand, since f is open and U is a domain, both U
and fU are open sets. Thus

∂fU = fU \ fU = (fU) \ fU ⊂ f(U \ U) = f∂U.

This proves the first inclusion.
We show now the second inclusion f∂U ⊂ ∂fU . Since f is continuous,

we have f∂U ⊂ fU ⊂ fU and so it suffices to show that fU ∩ f∂U = ∅.
Suppose towards contradiction that fU ∩ f∂U 6= ∅ and let z ∈ fU ∩ f∂U .
Since f is an open map and U is a domain there exists a radius s > 0 such
that B(z, s) ⊂ fU .

Fix w ∈ (∂U) ∩ f−1{z}. Since f is continuous, f−1B(x, r) is open and
thus intersects U as w ∈ (f−1B(x, r))∩∂U . In particular, the w-component
of f−1B(x, r), denoted W , intersects U . Now, as the open set U is the x-
component of f−1B(x, r) ⊃ f−1B(z, s), it must in fact contain W , since the
components of nested sets are also nested. This implies that w /∈ ∂U , which
is a contradiction. Thus f∂U ⊂ ∂fU and we conclude that f∂U = ∂fU .
Thus U is a normal domain.

Finally, we wish to show that fU = B(f(x), r). To this end we first note
that since f is an open map and U a domain, fU is an open set in B(f(x), r).
Next we show that fU must also be closed in B(f(x), r). Suppose towards
contradiction that there exists a point z ∈ B(f(x), r) ∩ ∂fU . Since ∂fU =
f∂U , we may fix a point w ∈ ∂U with f(w) = z. Now for s < r− d(f(x), z)
we see that the w-component V of f−1B(z, s) is a neighborhood of w that
intersects U . Since

V ⊂ f−1B(z, s) ⊂ f−1B(x, r)

and both U and V are connected we must have by the definition of U
that V ⊂ U . But this is a contradiction since w ∈ ∂U , but V is now a
neighborhood of w in U . Thus we conclude that fU is both open and closed
in B(f(x), r), and so in particular fU = B(f(x), r). �

We show next that, when restricted to a normal domain, a continuous,
open and light map is a proper map and furthermore the components of
the pre-image of a compact set map surjectively to that compact set. For
continuous, open and discrete maps this claim is straightforward to prove,
but for continuous, open and light maps the proof is more involved. The
proofs of the following two lemmas are a special case of a more general result
of Whyburn; see [19, Theorem 7.4, p. 147 and Theorem 7.5, p. 148].
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Lemma 2.3. Let U be a normal domain of a continuous, open and light
map f : Ω → C. Then the restriction f |U : U → fU is a proper map.

Proof. Let K ⊂ fU be a compact set. Suppose towards contradiction that
U ∩ f−1K is not compact. Then there exists a sequence (xj) in U ∩ f−1K

that has no subsequence converging in U ∩ f−1K. Since U is compact, the
sequence (xj) does have a subsequence (yj) converging to a point y0 ∈ U .
Since (f−1K) ∩ U is closed in U , we conclude that y0 ∈ ∂U . Now by the
continuity of f and closedness of K, we have that f(y0) ∈ K. Since y0 ∈ ∂U
and U is a normal domain, this implies that K ∩ ∂fU 6= ∅, which is a
contradiction, since K is a compact subset of the domain fU . We conclude
that f |U is a proper map. �

Lemma 2.4. Let U be a normal domain of a continuous, open and light
map f : Ω → C. Then for any compact connected set K ⊂ fU , and each
component E of (f |U )

−1K, the restriction f |E : E → K is surjective.

Proof. Let K ⊂ fU be a compact and connected set, and let Ẽ = (f |U )
−1K.

We note that, since f is open, also the restriction f |Ẽ : Ẽ → K is open.

Suppose towards contradiction that there exists a component E ⊂ Ẽ and
a point p ∈ K for which p /∈ fE. Since f |U : U → fU is a proper map, the
pre-image P = U ∩ f−1{p} is a compact set which does not intersect E.

Since Ẽ is a compact subset of the plane, it is especially a compact Haus-
dorff space. Thus the components of Ẽ equal the quasicomponents of Ẽ,
see e.g. [6, Theorem 6.1.23]; recall that the quasicomponent of a point is the
intersection of all open and closed sets containing that point. Thus we may
choose, for every x ∈ P , a separation {Ax, Bx} of the set Ẽ, i.e., two disjoint

open sets Ax, Bx ⊂ U covering Ẽ for which E ⊂ Ax and x ∈ Bx. Since P is
compact, the cover {Bx : x ∈ P} has a finite subcover {Bx1 , . . . , Bxn}.

For each j = 1, . . . , n, the open set Axj contains the set E and satisfies
Axj ∩Bxj = ∅. Thus the intersection

A =
n
⋂

j=1

Axj

is a neighborhood of E satisfying A ∩ P = ∅ and E ∩ ∂A = ∅. Now fA
is an open set in fU that contains fE but does not contain p. Since K is
a connected set that intersects both fA and its complement ∁fA ∋ p, we
have (∂fA) ∩K 6= ∅.

Finally, on the one hand, by the openness of f we have ∂fA ⊂ f∂A.
On the other hand, due to the definition of the sets Aj and thus of A,
(∂A)∩f−1K = ∅. This is a contradiction and so the original claim holds. �

3. Path lifting after Floyd and Stöılow

In this section we discuss path-lifting, which is one of the main tools in
the forthcoming proofs. The following theorem is, essentially, due to Stöılow
[16, pp. 354–358] and its idea was generalized by Floyd [7] to the setting of
compact metric spaces. We include here a version of Floyd’s proof in the
planar setting for the sake of completeness of the exposition; note that the
proof would go through also in the setting of locally compact metric spaces.



6 RAMI LUISTO AND PEKKA PANKKA

Theorem 3.1. Let Ω ⊂ C be a planar domain and f : Ω → C a continu-
ous, open and light map. Let U be a normal domain in Ω. Then for any
path β : [0, 1] → fU and any point x0 ∈ U ∩ f−1{β(0)} there exists a path
α : [0, 1] → U satisfying α(0) = x0 and f ◦ α = β.

We formulate a few lemmas for the proof of Theorem 3.1. For the state-
ment of these auxiliary results we set C (Ω) to be the collection of all non-
empty compact subsets of Ω ⊂ C. This space is given the topology induced
by the Hausdorff distance dH of compact sets, that is, the distance dH(A,A

′)
of compact sets A,A′ ⊂ C is

dH(A,A
′) = inf

{

ε > 0 | A ⊂ B(A′, ε), A′ ⊂ B(A, ε)
}

.

We show first that a continuous map f : Ω → C induces a continuous map
f∗ : A 7→ A . For the properties of the Hausdorff distance and convergence,
we refer to [5, pp. 70–77] and merely comment on the continuity of the
induced map f∗.

Lemma 3.2. For a continuous mapping f : Ω → C the induced map

f∗ : C (Ω) → C (C), A 7→ fA,

is continuous in the topology induced by the Hausdorff distance.

Proof. Let A ⊂ Ω be a compact set, denote dist(A, ∂Ω) =: s0 and set ε >
0. Since Ω is locally compact, the continuous map f is locally uniformly
continuous and so there exists δ ∈ (0, s04 ) such that d(f(x), f(y)) < ε for all
x, y ∈ B(A, s02 ) with d(x, y) < δ. In particular, fB(A, δ) ⊂ B(fA, ε).

Let A′ ⊂ Ω be a compact set for which dH(A,A
′) < δ. We show that

dH(fA, fA
′) < ε. Note first that since fB(A, δ) ⊂ B(fA, ε) and A′ ⊂

B(A, δ), we have fA′ ⊂ B(fA, ε). On the other hand, for any y0 ∈ fA
we can fix x0 ∈ A such that f(x0) = y0. Since dH(A,A

′) < δ there now
exists a point z0 ∈ A′ with d(z0, x0) < δ, and so by the aforementioned
uniform continuity d(f(z0), y0) < ε, so in particular fA ⊂ B(fA′, ε). Thus
dH(fA, fA

′) < ε and the induced map f∗ is continuous. �

The following lemma is contained e.g. in [19, pp. 131, 148], but we include
a modern proof for the reader’s convenience.

Lemma 3.3. Let Ω ⊂ C be a planar domain and f : Ω → C a continuous,
open and light map. Suppose U is a normal domain in Ω. Then for any
ε > 0 there exists a constant δ > 0 having the property that, for any contin-
uum C ′ ⊂ fU satisfying diam(C ′) < δ, the components of U ∩ f−1C ′ have
diameter strictly less than ε.

Proof. Suppose there exists ε0 > 0 having the property that, for each n ∈ N,
there exists a continuum C ′

n ⊂ fU having diameter at most 1/n and a
component Cn of U ∩ f−1C ′

n having diameter at least ε0. Note that by
Lemma 2.4 f(Cn) = C ′

n.
Since both U and fU are compact, we may, after passing to subse-

quences if necessary, assume that the sequences (C ′
n) and (Cn) converge

in the Hausdorff metric to a point z ∈ fU and to a continuum C ⊂ U
with diam(C) ≥ ε0, respectively. Then, by the continuity of f∗, i.e. Lemma
3.2, fC = {z}. Since f is light, this is a contradiction. Thus the claim is
true. �
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x0

C ∩ f−1(β(I))

β(0)

β(I)

I

f

β

Figure 1. An example of an (f, β, 2)-prelift of a path.

With these preliminary results we can now turn to the proof of Theorem
3.1. To improve the clarity of the exposition we define some further auxiliary
concepts. The crucial idea from Floyd is, in the setting of Theorem 3.1,
to define for any subdivison 0 = t0 < . . . < tk = 1 of the unit interval
a continuum C ⊂ U such that fC = |β| and C ∩ f−1(β([tj , tj+1])) is a
component of f−1(β([tj , tj+1])) for each j = 0, . . . , k − 1.

For the purpose of lifting paths, the dyadic subdivisions turn out to be
natural. We formalize Floyd’s idea by introducing the concept of a prelift.

Definition 3.4. For a continuous, open and light mapping f : Ω → C, a
normal domain U of f and a path β : [a, b] → fU we call a continuum
C = C(f, β, n) ⊂ U an (f, β, n)-prelift of β in U if

(1) for each k = 1, . . . 2n, C ∩ f−1(β[(k − 1)2−n, k2−n]) is a component
of f−1(β[(k − 1)2−n, k2−n]), and

(2) for each k = 0, . . . 2n, C ∩ f−1(β(k2−n)) 6= ∅.

We say that a prelift C starts from x0 ∈ f−1(β(a)) if x0 ∈ C.
The restriction of a prelift C(f, β, n) to an interval [c, d] ⊂ [a, b] is just a

subcontinuum of C that is also an (f, β|[c,d], n)-prelift. Note that an (f, β, n)
prelift is also a (f, β,m)-prelift for all m ≤ n.

Finally we denote by w(C) the mesh of a prelift C = C(f, β, n), that is

w(C) := max
k=1,...,2n

diam
(

C ∩ f−1(β[(k − 1)2−n, k2−n])
)

.

Note that as an immediate corollary of Lemma 3.3 and the uniform conti-
nuity of β we see that w(C(f, β, n)) → 0 as n→ ∞.

A posteriori, for planar continuous, open and light mappings the definition
of a prelift turns out to be overly verbose; the prelifts for continuous, open
and discrete mappings are merely boundedly finite unions of path segments
by Rickman’s path-lifting theorem in [14].

Lemma 3.5. In the setting of Theorem 3.1, for any n ∈ N and any given
x0 ∈ U ∩ f−1{β(0)}, there exists an (f, β, n)-prelift of β in U starting from
x0.
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Proof. Fix n ∈ N and x0 ∈ U ∩ f−1{β(a)}. We set C0 to be the component
of U ∩f−1(β[0, 2−n]) containing x0. By Lemma 2.4 this component C0 maps
surjectively onto β([0, 2−n]).

Suppose Ck−1 has been defined for some k < 2n. By Lemma 2.4 Ck−1

is mapped surjectively onto the set β[(k − 1)2−n, k2−n], which intersects
β[k2−n, (k + 1)2−n] by the continuity of β. In particular Ck−1 contains a
pre-image of the point f−1{β(k2−n)}, and so we may fix a component Ck of
f−1(β[k2−n, (k+1)2−n]) such that Ck and Ck−1 intersect. Again by Lemma
2.4 this component Ck maps surjectively onto β([k2−n, (k + 1)2−n]).

We now set C := ∪2n−1
j=0 Cj and note immediately that C is the required

(f, β, n)-prelift of β. �

We are now ready to prove Theorem 3.1. The idea of the proof relies on
taking a sequence of prelifts given by Lemma 3.5 and then constructing a
subsequence of these prelifts that is, in a sense, converging on each subin-
terval of [0, 1]. Curious readers might be interested in comparing this to the
properties of ultralimits where one can, in a compact metric space, choose
a converging subsequence for each sequence in a consistent manner via a
principal ultrafilter in N; see e.g. [5, pp. 77–80].

Proof of Theorem 3.1. Recall that by Lemma 2.3 the restriction of a con-
tinuous, open and light mapping to a normal domain is a proper map.

Fix a (f, β, n)-prelift Cn for each n ∈ N. We recursively construct a nested
sequence of subsequences of (Cn). First note that since (Cn) is a sequence of
continua in a a precompact domain U , it has a subsequence (C0

j )j converging

to a continuum C ⊂ U with respect to the Hausdorff metric. Furthermore
since f(Cn) ⊂ |β| with |β| ∩ ∂fU = ∅, we have C ⊂ U .

Suppose now that the subsequence (Cj−1
m )m has already been defined. We

define the next subsequence (Cjm)m in 2j steps. First note that a restric-

tion of the prelifts Cj−1
m to the interval [0, 2−j ] gives rise to a sequence of

(f, β|[0,2−j ], j)-prelifts. As before we may take a subsequence (S0
n) of (C

j
m)m

such that restricted sequence converges. Now suppose that a subsequence

(Skn)n of (Cjm)m has been defined for k < 2j − 1. We set (Sk+1
n ) to be

the subsequence of (Skn) such that the restrictions of these prelifts Skn to
the interval [k2−j , (k + 1)2−j ] form a converging sequence. Finally we set

(Cjm)m = (S2j
m )m.

From these nested sequences (Cjn)n, j ∈ N, we take the diagonal, i.e. we
set Pn = Cnn , and note that the sequence (Pn) has the property that for any

j ∈ N it is the subsequence of (Cjn)n after possibly omitting finitely many
elements. In particular, for any dyadic interval σ ⊂ [0, 1], the restrictions
of Pn to the interval σ form a converging sequence in U with respect to the
Hausdorff metric. We show next that the limit of Pn, denoted P , is a path
and thus a lift of β under f .

Fix t0 ∈ [0, 1]. Note that for any m ∈ N there are at most two intervals
of the form [k2−m, (k + 1)2−m] containing t0. Call the union of these two
intervals σm. Since the restrictions of Pn to any of the intervals σm converge
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as n→ ∞, we thus see that with respect to the Hausdorff metric,

(

Pn ∩ f
−1(β(σn))

)

=

n
⋂

k=1

(

Pn ∩ f
−1(β(σk))

)

→ P ∩ f−1(β(t0)).

Furthermore, since the mesh of the prelifts Pn tends to zero as n → ∞, we
note that also

diam(Pn ∩ f
−1(β(σn))) → 0 as n→ ∞.

Thus P ∩ f−1(β(t0)) is a point; call it α(t0). We next note that since the
mesh of the prelifts Pn tends to zero, there exists for any ǫ > 0 an integer
mǫ ∈ N such that d(α(t0), α(t)) < ǫ whenever |t0 − t| < 2−mǫ . Thus the
mapping t 7→ α(t) is continuous.

The path α : [0, 1] → U is now a path that maps onto β under f , and
α(0) = x0 by construction of the sequence (Cn). Furthermore, since the
prelifts were defined via pre-image components of pieces of |β|, we see that
in fact f ◦ α = β by Lemma 3.2. Thus α is a lift of β in U , and the claim
holds true. �

We end this section with a proposition on the uniqueness of lifts into
simply connected planar domains. Note that this claim clearly fails for
maps between more general surfaces, even between spheres, and in higher
dimensions.

Proposition 3.6. Let Ω ⊂ C be a simply connected planar domain, f : Ω →
C a continuous open map, and let β1, β2 : [0, 1] → Ω be lifts of the same line
segment α : [0, 1] → fΩ for which β1(0) = β2(0) and β1(1) = β2(1). Then
β1 = β2.

Proposition 3.6 is an almost immediate consequence of the following ver-
sion of the Jordan curve theorem; for a proof we refer to [12, Section 4]
or [13, Theorem 1.10, p. 33]. Furthermore we emphasize here that by the
boundary of a domain U compactly contained in a planar domain Ω we
mean the boundary relative to Ω.

Theorem (The Jordan curve theorem). Let Ω ⊂ C be a simply connected
planar domain and let c : S1 → Ω be an injective continuous map. Then
Ω \ |c| consists of two domains, exactly one of which has a compact closure
in Ω. Both of these domains have the image of the curve c as their boundary.

Besides the Jordan curve theorem we need also the following result stating
that a line segment is not a boundary of a bounded domain in the plane.
We formulate the statement of the lemma in slightly more general form for
later use.

Lemma 3.7. Let Ω be a precompact planar domain and β : [0, 1] → Ω a line
segment. Suppose r > 0 is a radius such that the closed balls B(β(0), r) and
B(β(1), r) are disjoint and contained in Ω. Then there exists no precompact
domain W ⊂ Ω such that

∂W ⊂ |β| ∪B(β(0), r) ∪B(β(1), r)

and
(

|β| \ (B(β(0), r) ∪B(β(1), r))
)

∩ ∂W 6= ∅.
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Proof. Towards contradiction, suppose there exists such a precompact do-
main W . Let

z ∈
(

|β| \ (B(β(0), r) ∪B(β(1), r))
)

∩ ∂W

and take a radius s > 0 such that B(w, s) intersects neither of the closed
balls B(β(0), r) and B(β(1), r).

Now the line segment β divides B(w, s) into two domains, one of which
must be contained in W since B(w, s)∩∂W is contained in the line segment
|β|. Denote that domain by V . Let now α : [0, 1) → Ω be a line segment, per-
pendicular to β, that starts from w, intersects V and ends at the boundary
of Ω. Since α does not intersect either of the balls B(β(0), r) and B(β(1), r),
we conclude that it intersects the boundary ofW at most once at α(0). Thus
α(0, 1) ⊂W and so W is not precompact as α(1) /∈W . �

Proof of Proposition 3.6. Suppose β1 6= β2. Then there exists t0 ∈ [0, 1] for
which β1(t0) 6= β2(t0). Let

a = sup{t ∈ [0, t0] | β1(t) = β2(t)} and b = inf{t ∈ [t0, 1] | β1(t) = β2(t)}.

Then there exists an injective continuous map c : S1 → Ω for which |c| =
|β1|[a,b]|∪ |β2|[a,b]|, and so |f ◦c| = α[a, b]. By the Jordan curve theorem, one
of the components of Ω \ |c|, say U , is a precompact subdomain of Ω with
∂U = |c|.

Thus fU is a precompact domain in C and ∂fU ⊂ |α|. This is a contra-
diction with Lemma 3.7 since α is a line segment. The claim follows. �

4. Proof of Theorem 1.1

We use now the path-lifting result, Theorem 3.1, and the Jordan curve
theorem to prove Theorem 1.1, that is, to show that a continuous, open
and light planar map is discrete. We follow here an idea of Stöılow that
the discreteness of the mapping follows from the finiteness of lifts of line
segments. Stöılow calls the following proposition, together with the existence
of lifts, Théorème Fondamental ([16, p. 361]).

Proposition 4.1. Let Ω be a planar domain and f : Ω → C a continuous,
open and light map. Let x ∈ Ω and let r > 0 be so small that U := U(x, f, r)
is a normal domain contained in a simply connected neighborhood of x in
Ω. Suppose β : [0, 1] → B(f(x), r) is a ray t 7→ tz0 + f(x), where z0 ∈ S

1.
Then there exists at most finitely many lifts of β in U .

With this proposition at our disposal, Theorem 1.1 follows immediately.

Proof of Theorem 1.1 assuming Proposition 4.1. Let x0 ∈ Ω be a point and
fix a normal domain U0 of x0 contained in some simply connected neighbor-
hood of x in Ω. By Theorem 3.1 a ray in fU0 starting from f(x0) has a lift
starting from each pre-image of f(x0) in U0. By Proposition 4.1, such a ray
has only finitely many lifts in U0. Thus the set U0∩f

−1{f(x0)} is finite and
so f is a discrete map. �

For the proof of Proposition 4.1 we require a few auxiliary results. The
first one is the following technical lemma about the intersection properties of
a sequence of sets which will be applied to the images of a sequence of paths.
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β

B(f(x), r)

f

β̃N β̃M

U(x, f, r)

Figure 2. Constructing a “rectangular Jordan curve” in the
proof of Proposition 4.1.

The proof requires no geometric properties of paths or planar topology; this
result is actually a version of the infinite Ramsey theorem for two colors;
see e.g. [8, Theorem 5, p. 16].

Lemma 4.2. Let X be a set and (An) be a sequence of subsets of X. Then
there exists a subsequence (Cn) of (An) for which either

(a) all the sets Cn are mutually disjoint, or
(b) any two of the sets Cn intersect.

Proof. We construct fist a subsequence (Bn) of (An) with the property that
for any k ∈ N either

(i) Bj ∩Bk = ∅ for all j > k, or
(ii) Bj ∩Bk 6= ∅ for all j > k.

We construct the sequence (Bn) recursively together with a sequence of
nested auxiliary subsequences (Bk

n)n of (An). Set first B0 = A0. Now either
B0 intersects infinitely many elements of (An)n≥1 or is disjoint from infinitely
many elements of (An)n≥1. Choose one such infinite collection and call it
(B0

n).
Suppose that (B0, . . . , Bk) and ((B0

n), . . . , (B
k
n)) have been defined. We

set Bk+1 = Bk
0 and note that either Bk+1 intersects infinitely many elements

of (Bk
n)n≥1 or is disjoint from infinitely many elements of (Bk+1

n )n≥1. Choose
one such infinite collection and call it (Bk+1

n ).
Since for all k ∈ N the sequence (Bk

n)n is a subsequence of (Bk−1
n )n, we

note that the required property holds for (Bn), i.e. for any k ∈ N either (i)
or (ii) holds.

To complete the proof we note that there are two types of elements in the
sequence (Bn); those satisfying condition (i) and those satisfying condition
(ii). Thus there must be infinitely many of elements of either type (i) or
type (ii). Call one such collection (Cn). Now either all elements of (Cn)
intersect all of the consequtive elements of the sequence or all elements of
(Cn) intersect none of the consequtive elements of the sequence. Thus we
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see that (Cn) satisfies the condition in the statement of the lemma and so
the proof is complete. �

Finally, we require the following lemma that allows us to extend pairs of
disjoint arcs into a Jordan curve.

Lemma 4.3. Let Ω be a planar domain with A,B ⊂ Ω domains such that
A∩B = ∅ and A,B ⊂ Ω. Suppose there exists two arcs α, β : [0, 1] → Ω for
which α(0), β(0) ∈ A, α(1), β(1) ∈ B and |α| ∩ |β| = ∅. Then there exists
a Jordan curve c : S1 → Ω for which |α| \ (A ∪ B) ⊂ |c|, |β| \ (A ∪ B) ⊂ |c|
and |c| ⊂ A ∪B ∪ |α| ∪ |β|.

Proof. Planar domains are arc-connected, so there exists arcs γA : [0, 1] → A
and γB : [0, 1] → B connecting the pairs of points (α(0), β(0)) and (α(1), β(1)),
respectively. Fix

t1A := sup{t ∈ [0, 1] | γA(t) ∈ |α|}, t2A := inf{t ∈ [t1A, 1] | γA(t) ∈ |β|},

t1B := sup{t ∈ [0, 1] | γB(t) ∈ |α|}, and t2B := inf{t ∈ [t1B, 1] | γB(t) ∈ |β|}.

We note that the restrictions γA|[t1
A
,t2
A
] and γB|[t1

B
,t2
B
] are arcs that meet the

paths α and β only at their endpoints. Thus we may define the Jordan curve
c as a concatenation of these two restrictions together with the restrictions
of α and β to suitable subintervals. �

Proof of Proposition 4.1. Suppose a ray β : [0, 1] → fU has infinitely many

mutually distinct lifts β̃n : [0, 1] → U , n ∈ N. By passing to a subsequence

if necessary, we may assume that β̃n(0) → x0 ∈ U and β̃n(1) → y0 ∈ U as
n → ∞. Since U is a normal domain and β(0), β(1) ∈ B(f(x), r), we have,
in fact, that x0, y0 ∈ U .

By Lemma 4.2 we may assume, by passing again to a subsequence if
necessary, that for the sequence (β̃n) either

(a) the images of the lifts β̃n are mutually disjoint, or

(b) any two of the images of the lifts β̃n intersect.

Suppose first that (a) holds. Let s > 0 be a radius for which V =
U(x0, f, s) and V

′ = U(y0, f, s) are mutually disjoint normal domains of x0
and y0, respectively. Let M,N ∈ N be distinct indices for which

β̃M (0), β̃N (0) ∈ V and β̃M (1), β̃N (1) ∈ V ′.

Then there exists by Lemma 4.3 a Jordan curve c : S1 → U for which

|c| ⊂ V ∪ V ′ ∪ |β̃M | ∪ |β̃N | and |c| 6⊂ V ∪ V ′.

The image |f ◦ c| is a continuum contained in the ray |β| and two mutually
disjoint disks B(f(x0), s) and B(f(y0), s) located at the endpoints of β; see
Figure 2. Let K = |β| ∪

(

B̄(f(x0), s) ∪ B̄(f(y0), s)
)

.
By the Jordan curve theorem the curve c bounds a precompact domain

W in U , having boundary equal to |c|. Now, on the one hand, the boundary
∂fW of fW is contained in |c| ⊂ K. Also note that since U = U(x, f, r), we
in particular have that fU = B(f(x), r) and so fW is a precompact domain
in a disk. On the other hand, the closure of fW contains the segment
|β| \ (B(f(x0), s) ∪B(f(y0), s)). Thus, by connectedness of fW , we have
fW ⊃ B(f(x), r) \ K. In particular, fW is not precompact in B(f(x), r).
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x0

β̃
y0

U(y0, f, r0)

U

β

γ
f

Figure 3. Path having infinitely many lifts with a joint
starting point in the proof of Proposition 4.1.

By Lemma 3.7 there can be no such domain fW . This is a contradiction,
and the proof in case (a) is complete.

Suppose now that (b) holds. By Proposition 3.6 one of the sets

{β̃j(1) | j ∈ N} or {β̃j(0) | j ∈ N}

must be infinite. Thus we may assume, by changing the direction of the
path β and by passing to a subsequence if necessary, that the endpoints
β̃j(1) are all distinct.

Let γ : [0, 1] → B(f(y0), r) be a ray for which γ(0) = f(y0) and |γ|∩ |β| =
f(y0); see Figure 3. For each n ∈ N, let γ̃n be a lift of γ starting from

β̃n(1). We show next that all the lifts γ̃n are pair-wise disjoint. Towards
contradiction suppose not and take γ̃k and γ̃j such that γ̃k(s0) = γ̃j(s0)

for some s0 ∈ [0, 1]. Now by the property (b) the two lifts β̃k and β̃j with

corresponding indices also intersect; β̃k(t0) = β̃j(t0) for some t0 ∈ [0, 1].
We may assume t0 is the first such intersection point, i.e. either t0 = 0
or β̃k(t) 6= β̃j(t) for all t < t0. For i = k, j we define the concatenations
θi : [0, 1] → U by setting

θi(t) =

{

β̃i(2t), t ∈ [0, 1/2]

γ̃i(2t− 1), t ∈ [1/2, 1].

Now applying Proposition 3.6 to the restrictions

θk|[t0/2,(s0+1)/2] and θj|[t0/2,(s0+1)/2]

gives rise to a contradiction and we conclude that all the lifts γ̃n are pair-wise
disjoint.

Now the argument of case (a) applies to the sequence (γ̃n), which is again
a contradiction and the proof is complete. �

5. Proofs of Theorems 1.2 and 1.3

Theorem 1.2 is a direct consequence of the following proposition. For
the statement, we say that a normal domain U of a continuous, open and
discrete map f : Ω → C is a normal neighborhood of x (with respect to f), if
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U ∩ f−1{f(x)} = {x}. The existence of such normal neighborhoods follows
immediately by noting that on the one hand for the discrete map f and any
point x ∈ Ω, we have d(x, f−1{f(x)} \ {x}) > 0 and on the other hand that
for continuous, open and discrete mappings diam(U(x, f, r)) → 0 as r → 0.
The latter property in turn follows e.g. from Lemma 3.3, but see also [15,
Lemma I.4.9].

Proposition 5.1. Let Ω be a planar domain and let f : Ω → C be a con-
tinuous, open and discrete map. Let x0 ∈ Ω and let r > 0 be so small
that U0 := U(x0, f, r) is a normal neighborhood of x0 contained in a simply
connected domain in Ω. Then U0 ∩Bf ⊂ {x0}.

Note that since f : Ω → C is a priori both continuous and open, the
branch set Bf of f is actually the set of points at which f is not locally
injective. Indeed, since a continuous and open bijection is a homeomor-
phism, we conclude that a continuous and open locally injective map is a
local homeomorphism. In particular, if f is locally injective at x ∈ Ω, then
x has a neighborhood U ⊂ Ω for which f |U : U → fU is a homeomorphism
and fU is an open neighborhood of f(x). Thus x 6∈ Bf .

Proof of Proposition 5.1. Suppose there exists b ∈ (U0 ∩ Bf ) \ {x0} and
let U ⊂ U0 be a normal neighborhood of b. Since b ∈ Bf , the map f is
not locally injective at b. Thus we may fix a point y0 ∈ fU for which
#(U ∩ f−1{y0}) ≥ 2. Note that since U is a normal neighborhood of b,
U ∩ f−1{f(b)} = {b} and so y0 6= f(b); likewise y0 6= f(x0).

Note that fU is a planar disk. Thus we may fix two (piecewise linear)
arcs α : [0, 1] → fU and β : [0, 1] → fU0\α(0, 1] satisfying α(0) = β(0) = y0,
α(1) = f(b), and β(1) = f(x0). Let also z1, z2 ∈ U ∩ f−1{y0}, z1 6= z2. By

Theorem 3.1, there exists, for i = 1, 2, lifts α̃i : [0, 1] → U and β̃i : [0, 1] → U0

of α and β, respectively, satisfying α̃i(0) = β̃i(0) = zi for i = 1, 2. Since U0

and U are normal neighborhoods of x0 and b, respectively, we have α̃i(1) = b,

β̃i(1) = x0 for i = 1, 2.
For i = 1, 2, let γ̃i : [0, 1] → U be the path

t 7→

{

α̃i(2t), t ∈ [0, 1/2]

β̃i(2t− 1), t ∈ [1/2, 1].

Since γ̃1(0) = γ̃2(0), γ̃1(1) = γ̃2(1), and U is contained in a simply connected
domain, we have by Proposition 3.6 that γ̃1 = γ̃2. This is a contradiction
and the claim follows. �

We finish with a simple proof of Theorem 1.3 based on Theorem 1.2 and
a covering argument. For the basic properties and terminology concerning
covering maps and covering neighborhoods we refer to [9].

Proof of Theorem 1.3. Let z ∈ Σ. Since the theorem posits the existence of
some neighborhood, the claim is local in nature and thus we may assume
that Σ and Σ′ are planar domains.

Let r > 0 be so small that U(z, f, r) is a normal neighborhood of z
contained in some simply connected domain in Σ. Denote

U ′ = U(z, f, r) \ {z}, B′ = B(f(z), r) \ {f(z)} and D
′ = D \ {0}.
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Since f is discrete by Theorem 1.1,

U ′ ∩ f−1{y} ⊂ U ∩ f−1{y}

is finite for any y ∈ fU . Furthermore, by Proposition 5.1 f |U ′ : U ′ → B′ is
a local homeomorphism and since U is a normal neighborhood, f |U ′ is also
a proper map. Thus as a proper local homeomorphism f |U ′ is a covering
map. Indeed, for any point y0 ∈ B′ the pre-image U ′∩f−1{y0} is a finite set
{x1, . . . , xk} and we may fix disjoint open sets Uj such that the restriction

f |Uj
: Uj → fUj, j = 1, . . . , k, is a homeomorphism. The open set ∩kj=1f(Uj)

is now a covering neighborhood of y0, i.e. the restriction of f to its pre-image
components is a homeomorphism onto the set.

As a finite cover of B′, the domain U ′ is a topological punctured disk and
we conclude that U is a topological disk. Let h1 : U → D and h2 : B(f(z), r) →
D be homeomorphisms with h1(z) = 0 and h2(f(z)) = 0. Let also

g := h2 ◦ f ◦ (h1|U ′)−1 : D′ → D
′.

Since f |U ′ : U ′ → B′ is a covering map, so is g. Thus the induced map
g∗ : π1(D

′) → π1(D
′) is of the form m 7→ km for some k ∈ Z \{0}. Note that

k 6= 0, since the induced homomorphism g∗ is injective by the homotopy
lifting property of covering maps.

We consider first the case k > 0. Let ζk : D
′ → D

′ be the covering map
z 7→ zk, and let h′ : D′ → D

′ be the lift of g : D′ → D
′ under ζk. Then

g = ζk ◦ h′ and h′ is a homeomorphism, since it is an injective covering
map. The homeomorphism h′ extends to a homeomorphism h : D → D by
the continuity of ζk and hence f |U = h2 ◦ ζk ◦ h ◦ h1 =: φ−1 ◦ ζk ◦ ψ.

In the case k < 0 we repeat the previous argument by replacing the
homeomorphism h2 by the homeomorphism k2 : B(f(x), r) → D defined by

x 7→ h(z). �
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Gauthier-Villars (Collection de monographies sur la théorie des fonctions), 1938.
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