On the inverse absolute continuity of quasiconformal mappings on hypersurfaces
Ntalampekos, D., & Romney, M. (2021). On the inverse absolute continuity of quasiconformal mappings on hypersurfaces. American Journal of Mathematics, 143(5), 1633-1659. https://doi.org/10.1353/ajm.2021.0041
Published in
American Journal of MathematicsDate
2021Copyright
© 2021 by Johns Hopkins University Press
We construct quasiconformal mappings f:R3→R3 for which there is a Borel set E⊂R2×{0} of positive Lebesgue 2-measure whose image f(E) has Hausdorff 2-measure zero. This gives a solution to the open problem of inverse absolute continuity of quasiconformal mappings on hypersurfaces, attributed to Gehring. By implication, our result also answers questions of V\"ais\"al\"a and Astala--Bonk--Heinonen.
Publisher
Johns Hopkins University PressISSN Search the Publication Forum
0002-9327Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/101958606
Metadata
Show full item recordCollections
Related funder(s)
European Commission; Academy of FinlandFunding program(s)
Academy Research Fellow, AoF


The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
Research of the first author supported in part by NSF grant DMS-1506099; research of the second author supported by the Academy of Finland grant 288501 and by the ERC Starting grant 713998 GeoMeG.License
Related items
Showing items with similar title or keywords.
-
Riemann surfaces and Teichmüller theory
Ikonen, Toni (2017)Riemannin pinnat ja Teichmüller-teoriaa. Tämän työn päämääränä on määritellä Riemannin pintojen Teichmüller-avaruudet sekä tutkia niiden geometrisia ominaisuuksia. Ensin työssä kehitetään peiteavaruuksien ja toimintojen ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ... -
Reciprocal lower bound on modulus of curve families in metric surfaces
Rajala, Kai; Romney, Matthew (Suomalainen tiedeakatemia, 2019) -
Singularities in L^p-quasidisks
Iwaniec, Tadeusz; Onninen, Jani; Zhu, Zheng (Suomen matemaattinen yhdistys ry, 2021)We study planar domains with exemplary boundary singularities of the form of cusps. A natural question is how much elastic energy is needed to flatten these cusps; that is, to remove singularities. We give, in a connection ... -
Quasiconformal Jordan Domains
Ikonen, Toni (Walter de Gruyter GmbH, 2021)We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y,dY). We say that a metric space (Y,dY) is a quasiconformal Jordan domain if the completion Y of (Y,dY) has finite Hausdor 2-measure, ...