Sobolev homeomorphic extensions onto John domains
Koskela, P., Koski, A., & Onninen, J. (2020). Sobolev homeomorphic extensions onto John domains. Journal of Functional Analysis, 279(10), Article 108719. https://doi.org/10.1016/j.jfa.2020.108719
Published in
Journal of Functional AnalysisDate
2020Discipline
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsCopyright
© 2020 Elsevier
Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schöenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous W1,2-extension but not even a homeomorphic W1,1-extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents p<2. John disks, being one sided quasidisks, are of fundamental importance in Geometric Function Theory.
Publisher
Elsevier Inc.ISSN Search the Publication Forum
0022-1236Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/41727055
Metadata
Show full item recordCollections
Related funder(s)
European Commission; Research Council of FinlandFunding program(s)
FP7 (EU's 7th Framework Programme); Academy Project, AoF
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
P. Koskela was supported by the Academy of Finland Grant number 323960. A. Koski was supported by the Academy of Finland Grant number 307023. J. Onninen was supported by the NSF grant DMS-1700274.License
Related items
Showing items with similar title or keywords.
-
Sobolev Extension on Lp-quasidisks
Zhu, Zheng (Springer Science and Business Media LLC, 2023)In this paper, we study the Sobolev extension property of Lp-quasidisks which are the generalizations of classical quasidisks. After that, we also find some applications of this property. -
Sobolev homeomorphic extensions
Koski, Aleksis; Onninen, Jani (European Mathematical Society, 2021)Let X and Y be ℓ-connected Jordan domains, ℓ∈N, with rectifiable boundaries in the complex plane. We prove that any boundary homeomorphism φ:∂X→∂Y admits a Sobolev homeomorphic extension h:X¯→Y¯ in W1,1(X,C). If instead X ... -
Sobolev homeomorphic extensions from two to three dimensions
Hencl, Stanislav; Koski, Aleksis; Onninen, Jani (Elsevier, 2024)We study the basic question of characterizing which boundary homeomorphisms of the unit sphere can be extended to a Sobolev homeomorphism of the interior in 3D space. While the planar variants of this problem are ... -
Bi-Sobolev Extensions
Koski, Aleksis; Onninen, Jani (Springer, 2023)We give a full characterization of circle homeomorphisms which admit a homeomorphic extension to the unit disk with finite bi-Sobolev norm. As a special case, a bi-conformal variant of the famous Beurling–Ahlfors extension ... -
Planar Sobolev extension domains
Zhang, Yi (University of Jyväskylä, 2017)This doctoral thesis deals with geometric characterizations of bounded planar simply connected Sobolev extension domains. It consists of three papers. In the first and third papers we give full geometric characterizations ...