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SOBOLEV HOMEOMORPHIC EXTENSIONS

ONTO JOHN DOMAINS

PEKKA KOSKELA, ALEKSIS KOSKI, AND JANI ONNINEN

Abstract. Given the planar unit disk as the source and a Jordan do-
main as the target, we study the problem of extending a given boundary
homeomorphism as a Sobolev homeomorphism. For general targets, this
Sobolev variant of the classical Jordan-Schöenflies theorem may admit
no solution - it is possible to have a boundary homeomorphism which
admits a continuous W 1,2-extension but not even a homeomorphic W 1,1-
extension. We prove that if the target is assumed to be a John disk, then
any boundary homeomorphism from the unit circle admits a Sobolev
homeomorphic extension for all exponents p < 2. John disks, being one
sided quasidisks, are of fundamental importance in Geometric Function
Theory.

1. Introduction

Throughout this text Y is a bounded Jordan domain and D is the unit
disk in the complex plane C. The classical Jordan-Schöenflies theorem states
that every homeomorphism ϕ : ∂D onto−−→ ∂Y admits a continuous extension
h : D → Y which takes D homeomorphically onto Y. We are seeking for its
Sobolev variant.

Question 1.1. Under which condition on Y does an arbitrary boundary
homeomorphism ϕ : ∂D onto−−→ ∂Y admit a homeomorphic extension h : D onto−−→
Y of Sobolev class W 1,p(D,C)?

The most immediate reason for studying such a variant comes from the
variational approach to Geometric Function Theory [2, 13, 15, 25] and Non-
linear Elasticity [1, 3, 8]. Both theories share the compilation ideas to de-
termine the infimum of a given stored energy functional among Sobolev
homeomorphisms. When one studies such variational problems in the pure
displacement setting, the first step is to ensure the existence of admissible
homeomorphisms; that is, to answer Question 1.1. To begin, the bound-
ary homeomorphism ϕ must be the Sobolev trace of some (possibly non-
homeomorphic) mapping in W 1,p(D,C). Hence the best Sobolev regularity
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2 P. KOSKELA, A. KOSKI, AND J. ONNINEN

one can hope for is p < 2 in Question 1.1, see [31]. On the other hand,
a Sobolev homeomorphic extension does not always exist for an arbitrary
target domain even for a fairly regular boundary mapping. Indeed, there
exists a Jordan domain Y and a homeomorphism ϕ : ∂D onto−−→ ∂Y which
admits a continuous W 1,2-Sobolev extension to D but does not admit any
homeomorphic extension to D in W 1,1(D,C), see [20, 32]. Secondly, the re-
quested W 1,p-Sobolev homeomorphism in Question 1.1 exists for all p < 2 if
the boundary of Y is rectifiable, see [20]. However, many important classes
of domains studied in Geometric Function Theory include domains with
nonrectifiable boundaries. Quasidisks serve as a standard example of such
domains. A planar domain is a quasidisk if it is the image of an open disk un-
der a quasiconformal self mapping of C, see Definition 2.1. They have been
studied intensively for many years because of their exceptional function the-
oretic properties, relationships with Teichmüller theory and Kleinian groups
and interesting applications in complex dynamics, see [10] for an elegant sur-
vey. In particular, the Koch snowflake reveals the possible complexity of a
quasidisk.

Figure 1. The Koch snowflake reveals the complexity of a quasidisk.

Theorem 1.2. Let Y be a quasidisk and ϕ : ∂D onto−−→ ∂Y a homeomorphism.
Then there exists a homeomorphic extension h : D onto−−→ Y of ϕ in W 1,p(D,C)
for all 1 6 p < 2.

Our argument generalizes to John disks, see Definition 2.2. A John disk
is a simply connected John domain. Such domains may be regarded as one-
sided quasidisks. They appear in many contexts in analysis [4, 5, 7, 9, 11,
22, 23, 30]. John domains were introduced by F. John [19] in connection
with his work on elasticity. Roughly speaking, a domain is a John domain
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if it is possible to travel from one point of the domain to another without
going too close to the boundary. John domains are allowed to have inward
cusps but not outward cusps.

Theorem 1.3. Let Y be a John disk and ϕ : ∂D onto−−→ ∂Y a homeomorphism.
Then there exists a homeomorphic extension h : D onto−−→ Y of ϕ in W 1,p(D,C)
for all 1 6 p < 2.

The key in our proofs is the construction the following self-homeomorphic
extension.

Theorem 1.4. Let 1 6 p < 2 and pβ < 1. Then every circle homeo-
morphism ϕ : ∂D onto−−→ ∂D has a locally Lipschitz continuous, homeomorphic
extension h : D onto−−→ D for which

(1.1) Ep,β[h] =

∫
D

|Dh(z)|p

(1− |h(z)|)pβ
dz <∞ .

Note that if βp 6 0, then the harmonic extension would simply give the
desired homeomorphism [16, 31]. However, when 0 < βp < 1, the harmonic
extension does not seem to work and a new way to construct Sobolev homeo-
morphisms is needed. The above weighted homeomorphic extension theorem
gives the requested W 1,p-Sobolev homeomorphic extension in Question 1.1
for all p < 2 provided Y receives an α-Hölder continuous quasiconformal
mapping from D with α > 1

2 , see Theorem 3.2.

Question 1.5. Let Y ⊂ C be a simply connected Jordan domain. Under
which conditions on Y does there exist a quasiconformal mapping f : D onto−−→
Y in C α(D,C) with α > 1

2?

Recall that it is characteristic for a quasiconformal mapping to behave
locally at every point like a radial stretching, see [17]. Without going into
detail, improving the Hölder regularity of f at x◦ automatically means lower-
ing the Hölder continuity for the inverse map at y◦ = f(x◦). We expect that
a quasiconformal change of variables in Question 1.5 (with gained Hölder
continuity) exists if the boundary mapping of the conformal mapping lies
in C ε(∂D) for some ε > 0. We verify that such a quasiconformal mapping
exists if Y is a quasidisk.

Theorem 1.6. Let Y be a quasidisk. Then there exists a quasiconformal
mapping f : D onto−−→ Y in C α(D,C) with some α > 1

2 .

This mapping is obtained by first constructing a quasisymmetric map
from ∂D onto ∂Y which lies in C α(∂D) with α > 1

2 , and then applying
an extension result of P. Tukia [27]. To simplify the construction of the
quasisymmetric map we rely on a result of S. Rohde [26], which states that
any quasicircle is bilipschitz equivalent to a snowflake-type curve. This
allows us to assume that ∂Y is a Rohde-type snowflake curve. As we have
already indicated, Theorem 1.2 follows from our weighted extension result
and Theorem 1.6. We will deduce Theorem 1.3 to Theorem 1.2.
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2. Definitions

Definition 2.1. Let Ω and Ω′ be planar domains. A homeomorphism
F : Ω onto−−→ Ω′ is a quasiconformal mapping if F ∈ W 1,1

loc (Ω,C) and there
exists a constant 1 6 K <∞ such that

|DF (x)|2 6 K detDF (x) a.e. in Ω .

Hereafter |·| stands for the operator norm of matrices.

Definition 2.2. A simply connected planar domain Y with at least two
boundary points is a c-John disk if any pair of points y1, y2 ∈ Y can be
joined by a rectifiable curve γ ⊂ Y such that

(2.1) min
i=1,2

`(γ(yi, y)) 6 c dist(y, ∂Y)

Hereafter, `(γ(yi, y)) denotes the length of the subcurve of γ between yi
and y, and dist(y, ∂Y) is the distance from y to the boundary ∂Y. In the
case when the value of the constant c plays no role we simply say that Y is
a John disk. For equivalent characterizations we refer to [24].

3. Proofs of extension results

In this section we outline the proofs of our main results. The main steps
are Theorem 1.4 and Theorem 1.6, which are proved in Sections 4 and 5
respectively.

Step 1. We first show that if Theorem 1.4 holds, then any domain which
admits a quasiconformal mapping from the unit disk in the Hölder class
Cα(D,C) for α > 1

2 is suitable for extending a given boundary homeomor-
phism as a Sobolev homeomorphism for p < 2.

Proposition 3.1. Let Y ⊂ C be a Jordan domain and f : D onto−−→ Y a home-
omorphism. Suppose that f is a quasiconformal mapping on D and f ∈
C α(D,C) for some α > 1

2 . Then there exists a homeomorphism F : D onto−−→ Y
which is quasiconformal on D and there is a constant C > 0 such that

(3.1) |DF (x)| 6 C

(1− |x|)1−α for almost every x ∈ D .

Proof. Let kΩ denote the quasihyperbolic metric in a domain Ω. The Sullivan-
Tukia-Väisälä approximation theorem [29, Corollary 7.12] provides us with

a quasiconformal mapping F : D onto−−→ Y such that for any ε > 0 we have

(3.2) kY
(
f(x), F (x)

)
6 ε

and

(3.3) C−1 kY
(
F (x), F (y)

)
6 kD(x, y) 6 C kY

(
F (x), F (y)

)
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for every x, y ∈ D. The constant C > 1 in (3.3) depends on the original
mapping f but is independent of x and y. It follows from (3.3) that F is
bi-Lipschitz in the quasihyperbolic metrics and locally bi-Lipschitz in the
Euclidean metrics and

(3.4) |DF (x)| 6 C dist(F (x), ∂Y)

1− |x|
where C > 1 is independent of x. For a proof of (3.4) we argue as follows.

Choosing x, h ∈ D with h close to zero, we use the fact that F is Lipschitz
in the quasihyperbolic metrics of D and Y to find that∫ F (x+h)

F (x)

|dω|
dist(ω, ∂Y)

6 C
∫ x+h

x

|dω|
dist(ω, ∂D)

.

Now letting h→ 0 gives (3.4).
It also follows from (3.2) that f = F on ∂D. From Lemma 2.1 in [12] we

may also find that

(3.5) log

(
|f(x)− F (x)|

d
+ 1

)
6 kY(f(x), F (x))

where d = min{dist
(
f(x), ∂Y

)
, dist

(
F (x), ∂Y

)
}. Combining this with (3.2)

we have

(3.6) log

(
|f(x)− F (x)|

d
+ 1

)
6 ε .

Thus for ε > 0 small enough we have

|f(x)− F (x)| 6 (eε − 1)d <
d

2
and thus

(3.7) dist
(
F (x), ∂Y

)
6 2 dist(f(x), ∂Y) 6 2C(1− |x|)α,

where the last inequality follows from the assumption f ∈ C α(D,C). Now
the asserted estimate (3.1) simply follows from (3.4) and (3.7).

�

Theorem 3.2. Let Y be a Jordan domain. Suppose that there is a homeo-
morphism f : D onto−−→ Y such that f is quasiconformal on D and f ∈ C α(D,C)

for some α > 1
2 . Then every homeomorphism ϕ : ∂D onto−−→ ∂Y admits a

homeomorphic extension h : D onto−−→ Y of Sobolev class W 1,p(D,C) for all
1 6 p < 2.

Proof. Via Proposition 3.1 we find a quasiconformal map F which takes D
onto Y and satisfies

(3.8) |DF (x)| 6 C

(1− |x|)1−α for almost every x ∈ D.
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Next, we define a homeomorphism ψ = F−1 ◦ ϕ : ∂D onto−−→ ∂D. Let β =
1 − α. Then applying the extension result Theorem 1.4 gives a Sobolev
homeomorphism H : D onto−−→ D with H = ψ on ∂D and

(3.9) Ep,β[H] =

∫
D

|DH(z)|p

(1− |H(z)|)pβ
dz <∞ .

Defining h = F ◦ H : D onto−−→ Y we have h = ϕ on ∂D and since both F,H
are locally Lipschitz, h is locally Lipschitz and∫

D
|Dh(z)|p dz 6

∫
D
|DF

(
H(z)

)
|p|DH(z)|p dz .

Combining this with (3.8) we obtain∫
D
|Dh(z)|p dz 6 C

∫
D

|DH(z)|p

(1− |H(z)|)pβ
dz

and the claim h ∈ W 1,p(D,C) follows from (3.9). �

Step 2. Combining the statements of Theorem 3.2 and Theorem 1.6 now
proves one of our main results, Theorem 1.2. It remains to show how The-
orem 1.3 then follows from Theorem 1.2.

Proof of Theorem 1.3. Let Y be a John disk. Then by [6], see also [14], Y
equipped with the internal metric, which we denote by dY, is bilipschitz
equivalent to a quasidisk. Hence there exists a quasidisk Ω and a bilipschitz
map G : (Ω, | · |) → (Y, dY). Letting L be the bilipschitz constant of G, we
find that

|G(z1)−G(z2)| 6 dY(G(z1), G(z2)) 6 L|z1 − z2|.
Thus G is also a Lipschitz mapping in the Euclidean metric. Now, given
a boundary homeomorphism ϕ : ∂D → ∂Y, we let H : D → Ω denote the
homeomorphic extension of G−1◦ϕ : ∂D→ ∂Ω given by Theorem 1.2. Then
the map h := G ◦ H gives a homeomorphic extension of ϕ and lies in the
Sobolev space W 1,p(D) for all p < 2 since H lies in these spaces and G is
Lipschitz. This completes the proof.

�

4. Proof of Theorem 1.4

Proof. We construct the homeomorphic extension h of ϕ as follows. The
given construction can be traced back to the extension technique of Jerison
and Kenig [18]. First, since the unit circle is smooth we may use a bilipschitz
map locally to assume it is flat. It will then be enough to give a construction
of a homeomorphism H from the triangle T = {(x, y) ∈ R2 : 0 6 y 6 1, y −
1 6 x 6 1−y} onto itself which is equal to a given boundary homeomorphism
ϕ on the real line part of T, the identity mapping on the rest of the boundary
and has finite energy

ETp,β[H] =

∫
T

|DH(z)|p[
dist(H(z))

]pβ dz <∞ .
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Here dist(H(z)) denotes the distance of H to the real line. We may assume,

without loss of generality, that the boundary homeomorphism ϕ : [−1, 1] onto−−→
[−1, 1] is increasing.

The reason why this suffices is that we may first cover the boundary of
the unit disc by some finite number of closed intervals disjoint apart from
their endpoints. For example, let us cover ∂D by four equal length intervals
I1, . . . , I4 and let I ′j = ϕ(Ij) for each j. Then for each of the intervals Ij ,
we connect both endpoints via a line segment to create circular segments
T1, . . . , T4 over the intervals I1, . . . , I4 that are mutually disjoint apart from
some endpoints of the Ij and each set is bilipschitz-equivalent to the triangle
T via some uniform bilipschitz constant. We do the same to the I ′j to

construct four circle segments T ′1, . . . , T
′
4 which are again mutually disjoint

and uniformly bilipschitz-equivalent to the triangle T , especially here we use
the fact that there are only a finite number of the I ′j to guarantee the fact
that the bilipschitz-constant is uniform. The bilipschitz mappings used here
may always be chosen such that they map the part on ∂D to the real line.
See Figure 2 for an illustration. Once we have shown a way to construct the
homeomorphism H as described in the previous paragraph, it is immediate
that we obtain a map from ∪jTj to ∪T ′j with the correct boundary behaviour,

injectivity and energy estimates. It remains to map the square D \ ∪jTj to
the quadrilateral D \ ∪T ′j via a bilipschitz map which is easily constructed

since the maps from Tj to T ′j will be shown to be bilipschitz on ∂Tj \∂D. On
this square the energy of H will be finite since the derivative is bounded from
above and the singularity poses no problem since dist(H(z)) is controlled by
dist(z) from below since H is bilipschitz on the square, and pβ < 1.

Figure 2. The sets Tj and T ′j .

We now split the boundary interval [−1, 1] of T into dyadic intervals Ik,j ,
where j denotes the generation of the interval, i.e. |Ik,j | = 2−j . We denote
by Ak,j and Bk,j the endpoints of such an interval from left to right. For
each k, j we also have an image interval I ′k,j which is the interval between
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ϕ(Ak,j) and ϕ(Bk,j) on the image side. We shall now construct, for each
dyadic interval, a set Uk,j that will be mapped onto an image set U ′k,j . None
of these sets will overlap apart from their boundaries and both collections
of sets will have union exactly equal to the original triangle T .

For an interval I on the real line, we denote by V (I) the point in the
upper half plane which, together with the endpoints of I, forms an isosceles
triangle with base I and right angle at the point V (I), we call this the apex
point of I. Let us now fix a dyadic interval Ik,j , and we will drop subscripts
for the rest of this construction for ease of notation so that Ik,j is simply I, its
image interval I ′k,j is simply I ′ and so on. We define five points X,Y, z, y, x

as follows. The first point X is the apex point V (I) of I. The second point
Y is the apex point of Ik+1,j , the neighbouring dyadic interval of I from the
right. The points x and y are the apex points of the two children of I from
left to right. The point z is the apex point of the first child of Ik+1,j from the
left. Connecting the points X,Y, x, y, z in that order gives a parallelogram
with one extra point y on the side between x and z which we call U , and we
consider this as a pentagon with one straight angle. We now let X ′ denote
the apex point of the image interval I ′ of I. Similarly we define Y ′, x′, y′

and z′. We now connect the points X ′, Y ′, z′, y′, x′ in that order to form
a pentagon which we denote by U ′. See Figure 3 for an illustration of the
configuration. We now wish to construct a piecewise affine map from U to

Figure 3. The set U and its image set U ′.

U ′ which is affine on each of the five sides of U , mapping each side to the
corresponding side of U ′. Such a construction is easily done if we map the
triangles ∆Xyx, ∆XY y and ∆Y zy via affine maps to the corresponding
triangles on the image side. If the dyadic interval I is the last one of its
generation, meaning that there is no neighbouring dyadic interval on the
right of it on the interval [−1, 1], then we simply define U as the triangle
∆Xyx and U ′ as ∆X ′y′x′. It is clear that these sets are disjoint apart from
their boundaries and fill the triangle T completely. If we define our map H
in each of the sets U as described above, then it is also immediate that H
is a homeomorphism from T to itself which is equal to the given boundary
map ϕ on the real line.

We begin to compute the energy ETp,β[H] on U . For that, let us start by

looking at the map H from ∆Xyx onto ∆X ′y′x′. To make our argument
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more general, we compute the energy of a general affine map H from ∆Xyx
to a triangle ∆P1P2P3 in the upper half plane. If L denotes the distance of
the point X to the real line, then all of the sides of ∆Xyx are comparable to
L and L is comparable to 2−j , where j is the generation of I. Let us define
the number b as the largest side length in the triangle ∆P1P2P3. Hence
the norm of the differential of the map H on ∆Xyx can be estimated from
above by a constant times b/L since the angles in ∆Xyx are bounded from
below by some positive constants. Thus

(4.1)

∫
∆Xyx

|DH(z)|p

dist(H(z))pβ
dz 6 C

bp

Lp

∫
∆Xyx

1

dist(H(z))pβ
dz.

It remains to estimate the integral expression on the right-hand side. Clearly
we may assume that pβ > 0. Suppose without loss of generality that the
distance from P1 to the real line is larger than or equal than to the distance
from P2 and P3 to the real line, and call this largest distance b̃. If we now
modify the triangle ∆P1P2P3 by moving both points P2 and P3 to the real
line, then the integral on the right-hand side of (4.1) increases. In this case,

the quantity dist(H(z)) is equal to b̃ on one vertex of the triangle ∆Xyx and
equal to zero on the opposing side of the triangle. To make the computation
a bit easier, we cover this triangle with a rectangle R whose both side lengths
are comparable to L, one side of R contains the side of the triangle where
dist(H(z)) is zero and the opposing side of R contains the vertex where

dist(H(z)) is equal to b̃. See Figure 4 for an illustration. Letting the side

Figure 4. The map H on the rectangle R.

lengths of R be c1L and c2L, we compute that∫
R

1

dist(H(z))pβ
dz 6 C1

∫ c1L

0

∫ c2L

0

1(
b̃
Ly
)pβ dxdy

= C2
L1+pβ

b̃pβ

∫ c1L

0

1

ypβ
dy

=
C3

1− pβ
L2

b̃pβ
.
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Here we also used the assumption pβ < 1. Hence for the full energy of H
over ∆Xyx we obtain the estimate∫

∆Xyx

|DH(z)|p

dist(H(z))pβ
dz 6 CL2−p b

p

b̃pβ
,

where C only depends on p and β.
Let us now suppose that the arbitrary triangle ∆P1P2P3 was ∆X ′y′x′.

In the triangle ∆X ′y′x′, the maximum distance from each vertex to the
real line is comparable to the maximum side length because of the way this
triangle was constructed via apex points of the dyadic intervals. Hence we
find that ∫

∆Xyx

|DH(z)|p

dist(H(z))pβ
dz 6 CL2−p bp−pβ ,

where b again denotes the maximum side length of the triangle ∆X ′y′x′ or
equivalently the maximum length of the dyadic intervals whose apex points
are vertices of this triangle.

The calculation in the triangles ∆XY y and ∆Y zy is now exactly the same.
In each of these triangles the side lengths are comparable to the same L
as before, and the angles are controlled from below. The energy of H on
both of these triangles is again estimated from above by the maximum side
length of the corresponding target triangle, which is always comparable to
the maximum distance to the real line in the target triangle. Thus we find
the same estimate

(4.2)

∫
∆

|DH(z)|p

dist(H(z))pβ
dz 6 CL2−p bp−pβ∆ ,

where ∆ denotes one of the triangles ∆XY y or ∆Y zy and b∆ denotes the
maximum side length of the corresponding target triangle, which is again
comparable to the maximum length of the involved dyadic intervals. If
the original dyadic interval was Ik,j , then these maximum lengths of the
corresponding target triangles over each of the three triangles that make up
the corresponding set U are estimated from above by the quantity |I ′k,j | +
|I ′k+1,j |. Applying this to (4.2) gives that∫

U

|DH(z)|p

dist(H(z))pβ
dz 6 CL2−p

(
|I ′k,j |p−pβ + |I ′k+1,j |p−pβ

)
.

Summing over all of the dyadic intervals, we find that

∫
T

|DH(z)|p

dist(H(z))pβ
dz 6 C

∞∑
j=0

2−j(2−p)
2j+1∑
k=1

|I ′k,j |p−pβ .
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We aim to show that the double sum on the right-hand side is finite. We
consider first the case p(1− β) > 1. In this case

∞∑
j=1

2−j(2−p)
2j+1∑
k=1

|I ′k,j |p(1−β) 6
∞∑
j=1

2−j(2−p)

2j+1∑
k=1

|I ′k,j |

p(1−β)

=
∞∑
j=1

2−j(2−p) · 2p(1−β) <∞

since
∑2j+1

k=1 |I ′k,j | is just the total length of the target boundary on the real

line, which we assume to be equal to 2. If p(1 − β) < 1, then by Hölder’s
inequality

2j+1∑
k=1

|I ′k,j |p(1−β) 6 2j(1−p(1−β))

2j+1∑
k=1

|I ′k,j |

p(1−β)

= 2j(1−p(1−β)) · 2p(1−β).

Hence

∞∑
j=1

2−j(2−p)
2j+1∑
k=1

|I ′k,j |p(1−β) 6 2p(1−β)
∞∑
j=1

2−j(1−pβ) <∞.

Thus ETp,β[H] <∞, which completes the proof. �

5. Proof of Theorem 1.6

Proof. Let us first invoke a result of Rohde [26] which states that any qua-
sicircle is bilipschitz equivalent to a snowflake-type curve. This allows us
to assume that Γ is a snowflake-type curve. We shall briefly explain the
definition of such a snowflake-type curve.

To construct a snowflake-type curve S, we fix a parameter p ∈ [1/4, 1/2).
Let us then construct a sequence of curves (Sn) as follows. Let S0 denote
the unit square in the plane, and let us call its sides the segments of S0.
We now construct the sequence (Sn) inductively. For each segment s in
Sn, there are two choices. We replace the segment with a translated and
scaled copy one of the two choices in Figure 5. In any case, the segment s
has been replaced by four smaller segments, which we call the children of
s. The curve obtained by making this choice for each segment s in Sn will
be the curve Sn+1. We assume from now on that all of the choices in the
construction have been fixed. The collection of all segments in all of the
curves Sn is denoted by P.

Every possible sequence of choices leads to a different sequence of curves
Sn, but in any case these curves will converge to a limit curve S. Thus the
snowflake-type curves are defined as limit curves of these kinds of construc-
tions. In order to define the required quasiconformal map to the bounded
Jordan domain whose boundary is S, it is enough to find a quasisymmetric
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Figure 5. The two choices of how to replace a segment in
Sn. The quantities in the picture represent the portion of the
total length of the segment.

boundary map g : S0 → S such that g ∈ Cα with α > 1/2. This is due to
Theorem 2.1 in [21], which is a conveniently formulated version of an exten-
sion theorem of Tukia, see [28]. To illustrate why this theorem implies our
result after the construction of g, we let f : C → C be the quasiconformal
extension of g as in [21]. Here g is defined on R instead of S0, but this is
merely a technicality since S0 is locally bilipschitz-equivalent to R. Theorem
2.1 in [21] implies that

|Df(x+ iy)| 6 C|y|−1|g(x+ y)− g(x− y)| 6 C|y|α−1.

The fact that f ∈ Cα now follows by applying this estimate on a line integral
between any two arbitrary points in C.

We shall now explain the convergence of Sn to S more in detail as we would
like to fix a parametrization gn : S0 → Sn so that we obtain the desired map
g as a limit.

Some terminology used here: By two disjoint line segments we mean that
they share at most one point (we do not pay much mind to whether line
segments are open or closed). Two quantities are comparable (denoted ≈) if
both can be estimated by a constant times the other. The dependence of the
constant will be only on the parameter p, unless explicitly stated otherwise.

Let the exponent α and the number x be defined by the equations

(5.1)

(
1

4

)α
= p and xα =

1

4
.

Hence α > 1/2 and x 6 1/4. Let us now construct the sequence (gn)
inductively. We let g0 : S0 → S0 be the identity map. We then construct
gn+1 based on gn. For each segment s in Sn, let I be the preimage of s under
gn which will always be a line segment. If the segment s was split according
to Choice 1 in Figure 5, then we split I into four equal length line segments
and define gn+1 so that it maps each of these line segments to the children
of s linearly, see Figure 6. If instead s was split according to Choice 2, then
we split I as in Figure 6 into two segments of length x and two segments
of length 1/2 − x. These will be mapped to the children of s as in Figure
6. The four intervals that I splits into are also called the children of I. Let
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Figure 6. How to construct gn+1 in the two different cases.
The quantities in the picture represent the portion of the
total length of the segment.

also R denote the collection of all such line segments I which are preimages
of some segment in P under the appropriate gn. This also induces a natural
map g∗ : P → R.

One may verify that the mappings gn converge uniformly to a homeo-
morphism g : S0 → S. We now aim to show the Hölder-continuity and
quasisymmetry of the map g.

Let us first explain how to calculate the length `(s) of a line segment s
in R or P. Denote by F the collection of all finite words that can be formed
using the letters A,B and C. We now define a map τ from R to F induc-
tively as follows. If I is one of the sides of S0, then τ(I) is the empty word.
If for some I ∈ R we have already defined τ(I) = w for a word w ∈ F ,
then τ will be defined on the children of I as follows. If the children of I are
formed via Choice 1 in Figure 6, then we define τ(I ′) = wA for every child I ′

of I, where wA denotes the word obtained by adding the letter A to the end
of w. If instead the children are formed based on Choice 2, then τ(I ′) = wB
for those children I ′ of I for which `(I ′)/`(I) = x and τ(I ′) = wC for those
children for which `(I ′)/`(I) = 1/2− x.

Let now a(w) denote the number of letters A in the word w ∈ F , similarly
b(w) the number of letters B and c(w) the number of letters C. Then from
the construction we find the formulas

`(I) =

(
1

4

)a(τ(I))

xb(τ(I))

(
1

2
− x
)c(τ(I))

for all I ∈ R

and

`(s) = pa(τ(g∗(s)))

(
1

4

)b(τ(g∗(s)))+c(τ(g∗(s)))

for all s ∈ P.
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Notice that by the relations of x, α and p in (5.1), we have for every s ∈ P
that

(5.2)
`(s)

`(g∗(s))α
= ηc(τ(g∗(s))) where η =

1/4

(1
2 − x)α

< 1.

Hence

(5.3) `(s) 6 `(g∗(s))α

for all such s. We define another function µ on P which sends every segment
s to the smaller arc of the snowflake-type curve S with the same endpoints
as s. From the construction of the snowflake-type curve one may see that
the diameters of s and µ(s) are always comparable. Then (5.3) implies that

(5.4) diam(g(I)) 6 C`(I)α for all I ∈ R.

Let now J be any arc of S0. Take a cover of J with line segments from
R with disjoint interiors so that the number of line segments in this cover
is minimal. Then there cannot be more than six line segments in this cover
since in any seven consecutive line segments there are always four which are
exactly the children of another line segment in R (with which we could then
replace these four). Furthermore, we may choose the line segments so that
their length is at most a constant depending on p times the total length of
J . From (5.4) we then find that g must be Hölder-continuous of exponent
α.

We must now show that g is quasisymmetric. Thus we must prove that

1

C
6
|g(x+ t)− g(x)|
|g(x)− g(x− t)|

6 C

for some constant C. Due to the nature of the construction, if we define
J+ = [x, x+t] and J− = [x−t, x] then it holds that |g(x+t)−g(x)| is always
comparable to diam(g(J+)) and similarly |g(x)− g(x− t)| is comparable to
diam(g(J−)). Now note that any arc J in S0 may be covered by six or less
line segments from R of comparable length with J and must also contain
at least one line segment from R of comparable length with J , which shows
that it is enough to prove the following claim to deduce the quasisymmetry
of g.

Claim. Let C be a fixed constant. Suppose I1, I2 ∈ R are disjoint in-
tervals such that C−1`(I1) 6 `(I2) 6 C`(I1) and dist(I1, I2) 6 C`(I1). Then
the lengths of g(I1) and g(I2) are comparable by a constant only depending
on C and p.

Suppose without loss of generality that c(τ(I1)) > c(τ(I2)). By formula
(5.2), the lengths of g(I1) and g(I2) differ by at most a constant times ηN ,
where N := c(τ(I1)) − c(τ(I2)). Hence we are to estimate the number N .

Denote by I
(1)
1 the parent of I1, I

(2)
1 the parent of I

(1)
1 and so on. We consider



SOBOLEV HOMEOMORPHIC EXTENSIONS ONTO JOHN DOMAINS 15

the line segment I∗ = I
(N−2)
1 . This choice implies that

(5.5) c(τ(I∗)) > c(τ(I2)) + 2,

which shows that the words τ(I∗) and τ(I2) differ by at least two letters
C. The line segments I∗ and I2 must be disjoint since otherwise one would
contain the other, which would either imply I1 ⊂ I2 or contradict (5.5).

Suppose first that the word τ(I2) has at least as many letters as τ(I∗),
meaning that I2 is of the same or later generation than I∗. In this case
let I∗2 be the line segment in R which contains I2 and such that τ(I∗) and
τ(I∗2 ) have the same length. Since τ(I∗2 ) has fewer letters than τ(I2), we have
c(τ(I∗)) > c(τ(I∗2 ))+2 by (5.5). Hence there must be a line segment I∗3 in R
between I∗ and I∗2 of the same generation. We may assume this line segment
is a neighbor of I∗. Now we must have that `(I∗3 ) 6 dist(I1, I2) 6 C`(I1).
Furthermore,

`(I∗3 ) ≈ `(I∗) > `(I1)

(1/2− x)N−2
,

since taking the parent of a line segment increases the length by at least a
factor of (1/2− x)−1. This gives a bound for N in terms of C and p, which
is enough.

Suppose now that the word τ(I2) has less letters than τ(I∗). Let I∗2 be
the line segment in R which is contained in I2, of the same generation as I∗,
and closest to I∗ (hence sharing an endpoint with I2). Then by construction
we have c(τ(I∗2 )) = c(τ(I2)) 6 c(τ(I∗))−2. The rest of the proof follows the
same line of arguments as the previous case (starting from the definition of
I∗3 ). This proves the claim. �
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