Show simple item record

dc.contributor.authorKoskela, Pekka
dc.contributor.authorKoski, Aleksis
dc.contributor.authorOnninen, Jani
dc.date.accessioned2020-08-26T10:41:20Z
dc.date.available2020-08-26T10:41:20Z
dc.date.issued2020
dc.identifier.citationKoskela, P., Koski, A., & Onninen, J. (2020). Sobolev homeomorphic extensions onto John domains. <i>Journal of Functional Analysis</i>, <i>279</i>(10), Article 108719. <a href="https://doi.org/10.1016/j.jfa.2020.108719" target="_blank">https://doi.org/10.1016/j.jfa.2020.108719</a>
dc.identifier.otherCONVID_41727055
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71515
dc.description.abstractGiven the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schöenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous W1,2-extension but not even a homeomorphic W1,1-extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents p<2. John disks, being one sided quasidisks, are of fundamental importance in Geometric Function Theory.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier Inc.
dc.relation.ispartofseriesJournal of Functional Analysis
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherSobolev homeomorphisms
dc.subject.otherSobolev extensions
dc.subject.otherJohn domains
dc.subject.otherquasidisks
dc.titleSobolev homeomorphic extensions onto John domains
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202008265656
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.relation.issn0022-1236
dc.relation.numberinseries10
dc.relation.volume279
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Elsevier
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber307023
dc.relation.grantnumber307023
dc.relation.grantnumber323960
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/307023/EU//InvProbGeomPDE
dc.subject.ysofunktionaalianalyysi
dc.subject.ysofunktioteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p17780
jyx.subject.urihttp://www.yso.fi/onto/yso/p18494
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.jfa.2020.108719
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuropean Commissionen
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramEU:n 7. puiteohjelma (FP7)fi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramFP7 (EU's 7th Framework Programme)en
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationP. Koskela was supported by the Academy of Finland Grant number 323960. A. Koski was supported by the Academy of Finland Grant number 307023. J. Onninen was supported by the NSF grant DMS-1700274.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0