Show simple item record

dc.contributor.authorLenngren, Nils
dc.contributor.authorEdlund, Petra
dc.contributor.authorTakala, Heikki
dc.contributor.authorStucki-Buchli, Brigitte
dc.contributor.authorRumfeldt, Jessica
dc.contributor.authorPeshev, Ivan
dc.contributor.authorHäkkänen, Heikki
dc.contributor.authorWestenhoff, Sebastian
dc.contributor.authorIhalainen, Janne
dc.date.accessioned2020-07-10T07:06:20Z
dc.date.available2020-07-10T07:06:20Z
dc.date.issued2018
dc.identifier.citationLenngren, N., Edlund, P., Takala, H., Stucki-Buchli, B., Rumfeldt, J., Peshev, I., Häkkänen, H., Westenhoff, S., & Ihalainen, J. (2018). Coordination of the biliverdin D-ring in bacteriophytochromes. <i>Physical Chemistry Chemical Physics</i>, <i>20</i>(28), 18216-18225. <a href="https://doi.org/10.1039/C8CP01696H" target="_blank">https://doi.org/10.1039/C8CP01696H</a>
dc.identifier.otherCONVID_28135372
dc.identifier.otherTUTKAID_78104
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71121
dc.description.abstractPhytochrome proteins translate light into biochemical signals in plants, fungi and microorganisms. Light cues are absorbed by a bilin chromophore, leading to an isomerization and a rotation of the D-ring. This relays the signal to the protein matrix. A set of amino acids, which is conserved across the phytochrome superfamily, holds the chromophore in the binding pocket. However, the functional role of many of these amino acids is not yet understood. Here, we investigate the hydrogen bonding network which surrounds the D-ring of the chromophore in the resting (Pr) state. We use UV/vis spectroscopy, infrared absorption spectroscopy and X-ray crystallography to compare the photosensory domains from Deinococcus radiodurans, the phytochrome 1 from Stigmatella aurantiaca, and a D. radiodurans H290T mutant. In the latter two, an otherwise conserved histidine next to the D-ring is replaced by a threonine. Our infrared absorption data indicate that the carbonyl of the D-ring is more strongly coordinated by hydrogen bonds when the histidine is missing. This is in apparent contrast with the crystal structure of the PAS–GAF domain of phytochrome 1 from S. aurantiaca (pdb code 4RPW), which did not resolve any obvious binding partners for the D-ring carbonyl. We present a new crystal structure of the H290T mutant of the PAS–GAF from D. radiodurans phytochrome. The 1.4 Å-resolution structure reveals additional water molecules, which fill the void created by the mutation. Two of the waters are significantly disordered, suggesting that flexibility might be important for the photoconversion. Finally, we report a spectral analysis which quantitatively explains why the histidine-less phytochromes do not reach equal Pfr-type absorption in the photoequilibrium compared to the Deinococcus radiodurans wild-type protein. The study highlights the importance of water molecules and the hydrogen bonding network around the chromophore for controlling the isomerization reaction and spectral properties of phytochromes.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofseriesPhysical Chemistry Chemical Physics
dc.rightsIn Copyright
dc.subject.otherphytochrome proteins
dc.subject.otherbiochemical signals
dc.subject.otherD-ring
dc.titleCoordination of the biliverdin D-ring in bacteriophytochromes
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202007095283
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineCell and Molecular Biologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2020-07-09T12:15:06Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange18216-18225
dc.relation.issn1463-9076
dc.relation.numberinseries28
dc.relation.volume20
dc.type.versionacceptedVersion
dc.rights.copyright© Royal Society of Chemistry, 2018
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber296135
dc.subject.ysoproteiinit
dc.subject.ysobakteerit
dc.subject.ysovalokemia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4332
jyx.subject.urihttp://www.yso.fi/onto/yso/p1749
jyx.subject.urihttp://www.yso.fi/onto/yso/p7201
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1039/C8CP01696H
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThe work was funded by the Bengt Lundqvist Memorial Foundation (N. L.), the Swiss National Science Foundation (P2ZHP2_164991 to B. S. B.), and the Academy of Finland grants 296135 to J. A. I. and 285461 to H. T. S. W. acknowledges the European Research Council for funding.
dc.type.okmA1


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright