Coordination of the biliverdin D-ring in bacteriophytochromes
Downloads:
Lenngren, N., Edlund, P., Takala, H., Stucki-Buchli, B., Rumfeldt, J., Peshev, I., Häkkänen, H., Westenhoff, S., & Ihalainen, J. (2018). Coordination of the biliverdin D-ring in bacteriophytochromes. Physical Chemistry Chemical Physics, 20(28), 18216-18225. https://doi.org/10.1039/C8CP01696H
Published in
Physical Chemistry Chemical PhysicsAuthors
Date
2018Copyright
© Royal Society of Chemistry, 2018
Phytochrome proteins translate light into biochemical signals in plants, fungi and microorganisms. Light cues are absorbed by a bilin chromophore, leading to an isomerization and a rotation of the D-ring. This relays the signal to the protein matrix. A set of amino acids, which is conserved across the phytochrome superfamily, holds the chromophore in the binding pocket. However, the functional role of many of these amino acids is not yet understood. Here, we investigate the hydrogen bonding network which surrounds the D-ring of the chromophore in the resting (Pr) state. We use UV/vis spectroscopy, infrared absorption spectroscopy and X-ray crystallography to compare the photosensory domains from Deinococcus radiodurans, the phytochrome 1 from Stigmatella aurantiaca, and a D. radiodurans H290T mutant. In the latter two, an otherwise conserved histidine next to the D-ring is replaced by a threonine. Our infrared absorption data indicate that the carbonyl of the D-ring is more strongly coordinated by hydrogen bonds when the histidine is missing. This is in apparent contrast with the crystal structure of the PAS–GAF domain of phytochrome 1 from S. aurantiaca (pdb code 4RPW), which did not resolve any obvious binding partners for the D-ring carbonyl. We present a new crystal structure of the H290T mutant of the PAS–GAF from D. radiodurans phytochrome. The 1.4 Å-resolution structure reveals additional water molecules, which fill the void created by the mutation. Two of the waters are significantly disordered, suggesting that flexibility might be important for the photoconversion. Finally, we report a spectral analysis which quantitatively explains why the histidine-less phytochromes do not reach equal Pfr-type absorption in the photoequilibrium compared to the Deinococcus radiodurans wild-type protein. The study highlights the importance of water molecules and the hydrogen bonding network around the chromophore for controlling the isomerization reaction and spectral properties of phytochromes.
...
Publisher
Royal Society of ChemistryISSN Search the Publication Forum
1463-9076Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28135372
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
The work was funded by the Bengt Lundqvist Memorial Foundation (N. L.), the Swiss National Science Foundation (P2ZHP2_164991 to B. S. B.), and the Academy of Finland grants 296135 to J. A. I. and 285461 to H. T. S. W. acknowledges the European Research Council for funding.License
Related items
Showing items with similar title or keywords.
-
Site-by-site tracking of signal transduction in an azidophenylalanine-labeled bacteriophytochrome with step-scan FTIR spectroscopy
Kurttila, Moona; Stucki-Buchli, Brigitte; Rumfeldt, Jessica; Schroeder, Lea; Häkkänen, Heikki; Liukkonen, Alli; Takala, Heikki; Kottke, Tilman; Ihalainen, Janne (Royal Society of Chemistry (RSC), 2021)Signal propagation in photosensory proteins is a complex and multidimensional event. Unraveling such mechanisms site-specifically in real time is an eligible but a challenging goal. Here, we elucidate the site-specific ... -
UV-Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes
Rumfeldt, Jessica; Takala, Heikki; Liukkonen, Alli; Ihalainen, Janne (Wiley-Blackwell Publishing, Inc., 2019)Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which ... -
Tips and turns of bacteriophytochrome photoactivation
Takala, Heikki; Edlund, Petra; Ihalainen, Janne A.; Westenhoff, Sebastian (Royal Society of Chemistry (RSC), 2020)Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. ... -
Chromophore-Protein Interplay During the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy
Ihalainen, Janne; Gustavsson, Emil; Schröder, Lea; Donnini, Serena; Lehtivuori, Heli; Isaksson, Linnéa; Thöing, Christian; Modi, Vaibhav; Berntsson, Oskar; Stucki-Buchli, Brigitte; Liukkonen, Alli; Häkkänen, Heikki; Kalenius, Elina; Westenhoff, Sebastian; Kottke, Tilman (American Chemical Society, 2018)Phytochrome proteins regulate many photoresponses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling ... -
The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser
Claesson, Elin; Wahlgren, Weixiao Yuan; Takala, Heikki; Pandey, Suraj; Castillon, Leticia; Kuznetsova, Valentyna; Henry, Léocadie; Panman, Matthijs; Carrillo, Melissa; Kübel, Joachim; Nanekar, Rahul; Isaksson, Linnéa; Nimmrich, Amke; Cellini, Andrea; Morozov, Dmitry; Maj, Michał; Kurttila, Moona; Bosman, Robert; Nango, Eriko; Tanaka, Rie; Tanaka, Tomoyuki; Fangjia, Luo; Iwata, So; Owada, Shigeki; Moffat, Keith; Groenhof, Gerrit; Stojkovic, Emina A.; Ihalainen, Janne A.; Schmidt, Marius; Westenhof, Sebastian (eLife Sciences Publications, 2020)Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through ...