Site-by-site tracking of signal transduction in an azidophenylalanine-labeled bacteriophytochrome with step-scan FTIR spectroscopy
Kurttila, M., Stucki-Buchli, B., Rumfeldt, J., Schroeder, L., Häkkänen, H., Liukkonen, A., Takala, H., Kottke, T., & Ihalainen, J. (2021). Site-by-site tracking of signal transduction in an azidophenylalanine-labeled bacteriophytochrome with step-scan FTIR spectroscopy. Physical Chemistry Chemical Physics, 23(9), 5615-5628. https://doi.org/10.1039/d0cp06553f
Published in
Physical Chemistry Chemical PhysicsAuthors
Date
2021Copyright
© the Owner Societies 2021
Signal propagation in photosensory proteins is a complex and multidimensional event. Unraveling such mechanisms site-specifically in real time is an eligible but a challenging goal. Here, we elucidate the site-specific events in a red-light sensing phytochrome using the unnatural amino acid azidophenylalanine, vibrationally distinguishable from all other protein signals. In canonical phytochromes, signal transduction starts with isomerization of an excited bilin chromophore, initiating a multitude of processes in the photosensory unit of the protein, which eventually control the biochemical activity of the output domain, nanometers away from the chromophore. By implementing the label in prime protein locations and running two-color step-scan FTIR spectroscopy on the Deinococcus radiodurans bacteriophytochrome, we track the signal propagation at three specific sites in the photosensory unit. We show that a structurally switchable hairpin extension, a so-called tongue region, responds to the photoconversion already in microseconds and finalizes its structural changes concomitant with the chromophore, in milliseconds. In contrast, kinetics from the other two label positions indicate that the site-specific changes deviate from the chromophore actions, even though the labels locate in the chromophore vicinity. Several other sites for labeling resulted in impaired photoswitching, low structural stability, or no changes in the difference spectrum, which provides additional information on the inner dynamics of the photosensory unit. Our work enlightens the multidimensionality of the structural changes of proteins under action. The study also shows that the signaling mechanism of phytochromes is accessible in a time-resolved and site-specific approach by azido probes and demonstrates challenges in using these labels.
...
Publisher
Royal Society of Chemistry (RSC)ISSN Search the Publication Forum
1463-9076Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/51779518
Metadata
Show full item recordCollections
Related funder(s)
Jane and Aatos Erkko Foundation; Research Council of FinlandFunding program(s)
Foundation; Academy Project, AoF; Academy Research Fellow, AoFAdditional information about funding
The work of BS-B has been supported by a grant from the Swiss National Science Foundation (P2ZHP2_164991). JAI acknowledges the Academy of Finland (296135 and 332742) and the Jane and Aatos Erkko foundation. HT acknowledges the Academy of Finland (285461 and 330678). LS acknowledges a fellowship of the Studienstiftung des Deutschen Volkes. TK acknowledges a Heisenberg fellowship of the Deutsche Forschungsgemeinschaft (KO3580/4-2). ...License
Related items
Showing items with similar title or keywords.
-
Tips and turns of bacteriophytochrome photoactivation
Takala, Heikki; Edlund, Petra; Ihalainen, Janne A.; Westenhoff, Sebastian (Royal Society of Chemistry (RSC), 2020)Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. ... -
Conserved histidine and tyrosine determine spectral responses through the water network in Deinococcus radiodurans phytochrome
Lehtivuori, Heli; Rumfeldt, Jessica; Mustalahti, Satu; Kurkinen, Sami; Takala, Heikki (Springer Science and Business Media LLC, 2022)Phytochromes are red light-sensing photoreceptor proteins that bind a bilin chromophore. Here, we investigate the role of a conserved histidine (H260) and tyrosine (Y263) in the chromophore-binding domain (CBD) of Deinococcus ... -
Structural mechanism of signal transduction in a phytochrome histidine kinase
Wahlgren, Weixiao Yuan; Claesson, Elin; Tuure, Iida; Trillo-Muyo, Sergio; Bódizs, Szabolcs; Ihalainen, Janne A.; Takala, Heikki; Westenhoff, Sebastian (Nature Publishing Group, 2022)Phytochrome proteins detect red/far-red light to guide the growth, motion, development and reproduction in plants, fungi, and bacteria. Bacterial phytochromes commonly function as an entrance signal in two-component sensory ... -
UV-Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes
Rumfeldt, Jessica; Takala, Heikki; Liukkonen, Alli; Ihalainen, Janne (Wiley-Blackwell Publishing, Inc., 2019)Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which ... -
The Photocycle of Bacteriophytochrome Is Initiated by Counterclockwise Chromophore Isomerization
Morozov, Dmitry; Modi, Vaibhav; Mironov, Vladimir; Groenhof, Gerrit (American Chemical Society (ACS), 2022)Photoactivation of bacteriophytochrome involves a cis–trans photoisomerization of a biliverdin chromophore, but neither the precise sequence of events nor the direction of the isomerization is known. Here, we used nonadiabatic ...