Show simple item record

dc.contributor.authorÄrje, Johanna
dc.contributor.authorRaitoharju, Jenni
dc.contributor.authorIosifidis, Alexandros
dc.contributor.authorTirronen, Ville
dc.contributor.authorMeissner, Kristian
dc.contributor.authorGabbouj, Moncef
dc.contributor.authorKiranyaz, Serkan
dc.contributor.authorKärkkäinen, Salme
dc.date.accessioned2020-06-25T07:27:13Z
dc.date.available2020-06-25T07:27:13Z
dc.date.issued2020
dc.identifier.citationÄrje, J., Raitoharju, J., Iosifidis, A., Tirronen, V., Meissner, K., Gabbouj, M., Kiranyaz, S., & Kärkkäinen, S. (2020). Human experts vs. machines in taxa recognition. <i>Signal Processing : Image Communication</i>, <i>87</i>, Article 115917. <a href="https://doi.org/10.1016/j.image.2020.115917" target="_blank">https://doi.org/10.1016/j.image.2020.115917</a>
dc.identifier.otherCONVID_35990112
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/70919
dc.description.abstractThe step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hierarchy in detail. We compare the results of Convolutional Neural Networks to human experts and support vector machines. Our results revealed that human experts using actual specimens yield the lowest classification error (CE¯=6.1%). However, a much faster, automated approach using deep Convolutional Neural Nets comes close to human accuracy (CE¯=11.4%) when a typical flat classification approach is used. Contrary to previous findings in the literature, we find that for machines following a typical flat classification approach commonly used in machine learning performs better than forcing machines to adopt a hierarchical, local per parent node approach used by human taxonomic experts (CE¯=13.8%). Finally, we publicly share our unique dataset to serve as a public benchmark dataset in this field.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesSignal Processing : Image Communication
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherhierarchical classification
dc.subject.othertaxonomy
dc.subject.otherconvolutional neural networks
dc.subject.othertaxonomic expert
dc.subject.othermulti-image data
dc.subject.otherbiomonitoring
dc.titleHuman experts vs. machines in taxa recognition
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202006255108
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0923-5965
dc.relation.volume87
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Elsevier B.V. All rights reserved.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber289076
dc.relation.grantnumber284513
dc.subject.ysohahmontunnistus (tietotekniikka)
dc.subject.ysotaksonit
dc.subject.ysokoneoppiminen
dc.subject.ysosystematiikka (biologia)
dc.subject.ysoneuroverkot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8266
jyx.subject.urihttp://www.yso.fi/onto/yso/p31232
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p19946
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.image.2020.115917
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundinginformationWe thank the Academy of Finland for the grants of Ärje (284513, 289076), Tirronen (289076, 289104) Kärkkäinen (289076), Meissner (289104), and Raitoharju (288584). We would like to thank CSC for computational resources.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0