Tree Species Identification Using 3D Spectral Data and 3D Convolutional Neural Network
Pölönen, I., Annala, L., Rahkonen, S., Nevalainen, O., Honkavaara, E., Tuominen, S., Viljanen, N., & Hakala, T. (2019). Tree Species Identification Using 3D Spectral Data and 3D Convolutional Neural Network. In WHISPERS 2018 : 9th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing. IEEE. https://doi.org/10.1109/WHISPERS.2018.8747253
Tekijät
Päivämäärä
2019Tekijänoikeudet
© 2018 IEEE
In this study we apply 3D convolutional neural network (CNN) for tree species identification. Study includes the three
most common Finnish tree species. Study uses a relatively large high-resolution spectral data set, which contains also a digital surface model for the trees. Data has been gathered using an unmanned aerial vehicle, a framing hyperspectral imager and a regular RGB camera. Achieved classification results are promising by with overall accuracy of 96.2 % for the classification of the validation data set.
Julkaisija
IEEEEmojulkaisun ISBN
978-1-7281-1581-8Konferenssi
Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote SensingKuuluu julkaisuun
WHISPERS 2018 : 9th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote SensingISSN Hae Julkaisufoorumista
2158-6276Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/31255771
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
TEKESRahoitusohjelmat(t)
Elinkeinoelämän kanssa verkottunut tutkimus, TEKESLisätietoja rahoituksesta
This research has been co-financed by Finnish Funding Agency for Innovation Tekes (grants 2208/31/2013 and 1711/31/2016)Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks
Nezami, Somayeh; Khoramshahi, Ehsan; Nevalainen, Olli; Pölönen, Ilkka; Honkavaara, Eija (MDPI AG, 2020)Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include ... -
Construction of Multi-resolution Multi-organ Shape Model Based on Stacked Autoencoder Neural Network
Chen, Zhonghua; Wang, Hongkai; Cong, Fengyu; Kettunen, Lauri (IEEE, 2022)The construction of statistical shape models (SSMs) is an important method in the field of medical image segmentation. Most SSMs are constructed by using traditional modeling methods based on principal component analysis ... -
Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion
Annala, Leevi; Honkavaara, Eija; Tuominen, Sakari; Pölönen, Ilkka (MDPI AG, 2020)Miniaturized hyperspectral imaging techniques have developed rapidly in recent years and have become widely available for different applications. Combining calibrated hyperspectral imagery with inverse physically based ... -
Using Aerial Platforms in Predicting Water Quality Parameters from Hyperspectral Imaging Data with Deep Neural Networks
Hakala, Taina; Pölönen, Ilkka; Honkavaara, Eija; Näsi, Roope; Hakala, Teemu; Lindfors, Antti (Springer, 2020)In near future it is assumable that automated unmanned aerial platforms are coming more common. There are visions that transportation of different goods would be done with large planes, which can handle over 1000 kg payloads. ... -
Prediction of major torso organs in low-contrast micro-CT images of mice using a two-stage deeply supervised fully convolutional network
Wang, Hongkai; Han, Ye; Chen, Zhonghua; Hu, Ruxue; Chatziioannou, Arion F.; Zhang, Bin (Institute of Physics, 2019)Delineation of major torso organs is a key step of mouse micro-CT image analysis. This task is challenging due to low soft tissue contrast and high image noise, therefore anatomical prior knowledge is needed for accurate ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.