A Bayesian Reconstruction of a Historical Population in Finland, 1647–1850
Voutilainen, M., Helske, J., & Högmander, H. (2020). A Bayesian Reconstruction of a Historical Population in Finland, 1647–1850. Demography, 57(3), 1171-1192. https://doi.org/10.1007/s13524-020-00889-1
Julkaistu sarjassa
DemographyPäivämäärä
2020Tekijänoikeudet
© The Authors, 2020
This article provides a novel method for estimating historical population development. We review the previous literature on historical population time-series estimates and propose a general outline to address the well-known methodological problems. We use a Bayesian hierarchical time-series model that allows us to integrate the parish-level data set and prior population information in a coherent manner. The procedure provides us with model-based posterior intervals for the final population estimates. We demonstrate its applicability by estimating the long-term development of Finland’s population from 1647 onward and simultaneously place the country among the very few to have an annual population series of such length available.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0070-3370Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/35962982
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen Akatemia; OP Ryhmän Tutkimussäätiö srRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SA; Profilointi, SA; Akatemiahanke, SA; SäätiöLisätietoja rahoituksesta
Open access funding provided by University of Jyväskylä (JYU). Miikka Voutilainen acknowledges financial support of OP Group Research Foundation grants 201600139, 20170130, and 20180071; Academy of Finland grant 308975; and research visit to UC Davis in 2018. Jouni Helske was supported by the Academy of Finland research grants 284513 and 312605 and 311877.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Valkosolupitoisuuksien bayesilainen mallintaminen lasten leukemian ylläpitohoidossa
Karppinen, Santeri (2018)Lasten akuutin lymfoblastileukemian ylläpitovaiheen hoidossa tehtävät lääkeannostuspäätökset pohjataan nykyisin potilaan veren valkosolupitoisuuteen, joka on hoidon tehokkuudesta kertova tekijä. Potilaalle sopiva lääkeannostus ... -
A Bayesian spatio‐temporal analysis of markets during the Finnish 1860s famine
Pasanen, Tiia‐Maria; Voutilainen, Miikka; Helske, Jouni; Högmander, Harri (Wiley-Blackwell, 2022)We develop a Bayesian spatio-temporal model to study pre-industrial grain market integration during the Finnish famine of the 1860s. Our model takes into account several problematic features often present when analysing ... -
Efficient Bayesian generalized linear models with time-varying coefficients : The walker package in R
Helske, Jouni (Elsevier BV, 2022)The R package walker extends standard Bayesian general linear models to the case where the effects of the explanatory variables can vary in time. This allows, for example, to model the effects of interventions such as ... -
Price Optimization Combining Conjoint Data and Purchase History : A Causal Modeling Approach
Valkonen, Lauri; Tikka, Santtu; Helske, Jouni; Karvanen, Juha (University of Pennsylvania Press, 2024)Pricing decisions of companies require an understanding of the causal effect of a price change on the demand. When real-life pricing experiments are infeasible, data-driven decision-making must be based on alternative data ... -
Estimation of causal effects with small data in the presence of trapdoor variables
Helske, Jouni; Tikka, Santtu; Karvanen, Juha (Wiley-Blackwell, 2021)We consider the problem of estimating causal effects of interventions from observational data when well-known back-door and front-door adjustments are not applicable. We show that when an identifiable causal effect is ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.