Resolving Bio-Nano Interactions of E.coli Bacteria-Dragonfly Wing Interface with Helium Ion and 3D-Structured Illumination Microscopy to Understand Bacterial Death on Nanotopography
Bandara, C. D., Ballerin, G., Leppänen, M., Tesfamichael, T., Ostrikov, K. (., & Whitchurch, C. B. (2020). Resolving Bio-Nano Interactions of E.coli Bacteria-Dragonfly Wing Interface with Helium Ion and 3D-Structured Illumination Microscopy to Understand Bacterial Death on Nanotopography. ACS Biomaterials Science & Engineering, 6(7), 3925-3932. https://doi.org/10.1021/acsbiomaterials.9b01973
Julkaistu sarjassa
ACS Biomaterials Science & EngineeringTekijät
Päivämäärä
2020Tekijänoikeudet
© 2020 American Chemical Society
Obtaining a comprehensive understanding of the bactericidal mechanisms of natural nanotextured surfaces is crucial for the development of fabricated nanotextured surfaces with efficient bactericidal activity. However, the scale, nature, and speed of bacteria-nanotextured surface interactions make the characterization of the interaction a challenging task. There are currently several different opinions regarding the possible mechanisms by which bacterial membrane damage occurs upon interacting with nanotextured surfaces. Advanced imaging methods could clarify this by enabling visualization of the interaction. Charged particle microscopes can achieve the required nanoscale resolution but are limited to dry samples. In contrast, light-based methods enable the characterization of living (hydrated) samples but are limited by the resolution achievable. Here we utilized both helium ion microscopy (HIM) and 3D structured illumination microscopy (3D-SIM) techniques to understand the interaction of Gram-negative bacterial membranes with nanopillars such as those found on dragonfly wings. Helium ion microscopy enables cutting and imaging at nanoscale resolution while 3D-SIM is a super-resolution optical microscopy technique that allows visualization of live, unfixed bacteria at ~100 nm resolution. Upon bacteria-nanopillar interaction, the energy stored due to the bending of natural nanopillars was estimated and compared with fabricated vertically aligned carbon nanotubes. With the same deflection, shorter dragonfly wing nanopillars store slightly higher energy compared to carbon nanotubes. This indicates that fabricated surfaces may achieve similar bactericidal efficiency as dragonfly wings. This study reports in situ characterization of bacteria-nanopillar interactions in real-time close to its natural state. These microscopic approaches will help further understanding of bacterial membrane interactions with nanotextured surfaces and the bactericidal mechanisms of nanotopographies so that more efficient bactericidal nanotextured surfaces can be designed, fabricated, and their bacteria-nanotopography interactions can be assessed in situ.
...
Julkaisija
American Chemical SocietyISSN Hae Julkaisufoorumista
2373-9878Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/35944320
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Work of Miika Leppänen was supported by the Jane and Aatos Erkko Foundation. Work of Chaturanga Bandara was partly supported by SEF Write-up scholarship. Authors acknowledge Facilities of Central Analytical Research Facility (CARF, IFE) at Queensland University of Technology and ithree Institute at University of Technology Sydney.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Imaging Bacterial Colonies and Phage-Bacterium Interaction at Sub-Nanometer Resolution Using Helium-Ion Microscopy
Leppänen, Miika; Sundberg, Lotta-Riina; Laanto, Elina; De Freitas Almeida, Gabriel; Papponen, Petri; Maasilta, Ilari (Wiley, 2017)Imaging of microbial interactions has so far been based on well‐established electron microscopy methods. This study presents a new way to study bacterial colonies and interactions between bacteria and their viruses, ... -
Tissue-Specific Dynamics in the Endophytic Bacterial Communities in Arctic Pioneer Plant Oxyria digyna
Given, Cindy; Häikiö, Elina; Kumar, Manoj; Nissinen, Riitta (Frontiers Media, 2020)The rapid developments in the next-generation sequencing methods in the recent years have provided a wealth of information on the community structures and functions of endophytic bacteria. However, the assembly processes ... -
Extending the hosts of Tectiviridae into four additional genera of Gram-positive bacteria and more diverse Bacillus species
Jalasvuori, Matti; Koskinen, Katariina (Academic Press, 2018)Tectiviridae are composed of tailless bacteriophages with an icosahedral capsid and an inner membrane enclosing a double-stranded 15 kb linear DNA genome. Five of the seven previously studied Tectivirus isolates infect ... -
Heritable Epichloë symbiosis shapes fungal but not bacterial communities of plant leaves
Nissinen, Riitta; Helander, Marjo; Gopala Krishnan, Manoj Kumar; Saikkonen, Kari (Nature Publishing Group, 2019)Keystone microbial species have driven eco-evolutionary processes since the origin of life. However, due to our inability to detect the majority of microbiota, members of diverse microbial communities of fungi, bacteria ... -
Long-term genomic coevolution of host-parasite interaction in the natural environment
Laanto, Elina; Hoikkala, Ville; Ravantti, Janne; Sundberg, Lotta-Riina (Nature Publishing Group, 2017)Antagonistic coevolution of parasite infectivity and host resistance may alter the biological functionality of species, yet these dynamics in nature are still poorly understood. Here we show the molecular details of a ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.