Näytä suppeat kuvailutiedot

dc.contributor.authorBandara, Chaturanga D.
dc.contributor.authorBallerin, Giulia
dc.contributor.authorLeppänen, Miika
dc.contributor.authorTesfamichael, Tuquabo
dc.contributor.authorOstrikov, Kostya (Ken)
dc.contributor.authorWhitchurch, Cynthia B.
dc.date.accessioned2020-06-12T07:21:27Z
dc.date.available2020-06-12T07:21:27Z
dc.date.issued2020
dc.identifier.citationBandara, C. D., Ballerin, G., Leppänen, M., Tesfamichael, T., Ostrikov, K. (., & Whitchurch, C. B. (2020). Resolving Bio-Nano Interactions of E.coli Bacteria-Dragonfly Wing Interface with Helium Ion and 3D-Structured Illumination Microscopy to Understand Bacterial Death on Nanotopography. <i>ACS Biomaterials Science & Engineering</i>, <i>6</i>(7), 3925-3932. <a href="https://doi.org/10.1021/acsbiomaterials.9b01973" target="_blank">https://doi.org/10.1021/acsbiomaterials.9b01973</a>
dc.identifier.otherCONVID_35944320
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/69906
dc.description.abstractObtaining a comprehensive understanding of the bactericidal mechanisms of natural nanotextured surfaces is crucial for the development of fabricated nanotextured surfaces with efficient bactericidal activity. However, the scale, nature, and speed of bacteria-nanotextured surface interactions make the characterization of the interaction a challenging task. There are currently several different opinions regarding the possible mechanisms by which bacterial membrane damage occurs upon interacting with nanotextured surfaces. Advanced imaging methods could clarify this by enabling visualization of the interaction. Charged particle microscopes can achieve the required nanoscale resolution but are limited to dry samples. In contrast, light-based methods enable the characterization of living (hydrated) samples but are limited by the resolution achievable. Here we utilized both helium ion microscopy (HIM) and 3D structured illumination microscopy (3D-SIM) techniques to understand the interaction of Gram-negative bacterial membranes with nanopillars such as those found on dragonfly wings. Helium ion microscopy enables cutting and imaging at nanoscale resolution while 3D-SIM is a super-resolution optical microscopy technique that allows visualization of live, unfixed bacteria at ~100 nm resolution. Upon bacteria-nanopillar interaction, the energy stored due to the bending of natural nanopillars was estimated and compared with fabricated vertically aligned carbon nanotubes. With the same deflection, shorter dragonfly wing nanopillars store slightly higher energy compared to carbon nanotubes. This indicates that fabricated surfaces may achieve similar bactericidal efficiency as dragonfly wings. This study reports in situ characterization of bacteria-nanopillar interactions in real-time close to its natural state. These microscopic approaches will help further understanding of bacterial membrane interactions with nanotextured surfaces and the bactericidal mechanisms of nanotopographies so that more efficient bactericidal nanotextured surfaces can be designed, fabricated, and their bacteria-nanotopography interactions can be assessed in situ.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesACS Biomaterials Science & Engineering
dc.rightsIn Copyright
dc.subject.otherheliumionimikroskopia
dc.subject.otherbactericidal topography
dc.subject.otherbio-nano interactions
dc.subject.other3D SIM
dc.subject.otherdragonfly
dc.subject.otherwing
dc.subject.otherhelium ion microscopy
dc.subject.otherion beam milling
dc.titleResolving Bio-Nano Interactions of E.coli Bacteria-Dragonfly Wing Interface with Helium Ion and 3D-Structured Illumination Microscopy to Understand Bacterial Death on Nanotopography
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202006124151
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3925-3932
dc.relation.issn2373-9878
dc.relation.numberinseries7
dc.relation.volume6
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysobakteriofagit
dc.subject.ysobakteriologia
dc.subject.ysotopografia
dc.subject.ysobakteerit
dc.subject.ysonanomateriaalit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p25303
jyx.subject.urihttp://www.yso.fi/onto/yso/p20586
jyx.subject.urihttp://www.yso.fi/onto/yso/p1159
jyx.subject.urihttp://www.yso.fi/onto/yso/p1749
jyx.subject.urihttp://www.yso.fi/onto/yso/p22976
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1021/acsbiomaterials.9b01973
jyx.fundinginformationWork of Miika Leppänen was supported by the Jane and Aatos Erkko Foundation. Work of Chaturanga Bandara was partly supported by SEF Write-up scholarship. Authors acknowledge Facilities of Central Analytical Research Facility (CARF, IFE) at Queensland University of Technology and ithree Institute at University of Technology Sydney.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright