dc.contributor.author | Björn, Anders | |
dc.contributor.author | Björn, Jana | |
dc.contributor.author | Lehrbäck, Juha | |
dc.date.accessioned | 2020-06-11T10:17:18Z | |
dc.date.available | 2020-06-11T10:17:18Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Björn, A., Björn, J., & Lehrbäck, J. (2020). Existence and almost uniqueness for p-harmonic Green functions on bounded domains in metric spaces. <i>Journal of Differential Equations</i>, <i>269</i>(9), 6602-6640. <a href="https://doi.org/10.1016/j.jde.2020.04.044" target="_blank">https://doi.org/10.1016/j.jde.2020.04.044</a> | |
dc.identifier.other | CONVID_35919064 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/69879 | |
dc.description.abstract | We study (p-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive capacity, and that they satisfy very precise capacitary identities for superlevel sets. Suitably normalized singular functions are called Green functions. Uniqueness of Green functions is largely an open problem beyond unweighted Rn, but we show that all Green functions (in a given domain and with the same singularity) are comparable. As a consequence, for p-harmonic functions with a given pole we obtain a similar comparison result near the pole. Various characterizations of singular functions are also given. Our results hold in complete metric spaces with a doubling measure supporting a p-Poincaré inequality, or under similar local assumptions. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Journal of Differential Equations | |
dc.rights | CC BY 4.0 | |
dc.subject.other | capacitary potential | |
dc.subject.other | doubling measure | |
dc.subject.other | metric space | |
dc.subject.other | p-harmonic | |
dc.subject.other | green function | |
dc.subject.other | Poincaré inequality | |
dc.subject.other | singular function | |
dc.title | Existence and almost uniqueness for p-harmonic Green functions on bounded domains in metric spaces | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202006114124 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 6602-6640 | |
dc.relation.issn | 0022-0396 | |
dc.relation.numberinseries | 9 | |
dc.relation.volume | 269 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2020 The Authors. Published by Elsevier Inc | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | potentiaaliteoria | |
dc.subject.yso | metriset avaruudet | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18911 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27753 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.jde.2020.04.044 | |
jyx.fundinginformation | A.B. and J.B. were supported by the Swedish Research Council, grants 2016-03424 and 621-2014-3974, respectively. J.L. was supported by the Academy of Finland, grant 252108. | |
dc.type.okm | A1 | |