dc.contributor.author | Geiss, Christel | |
dc.contributor.author | Steinicke, Alexander | |
dc.date.accessioned | 2020-04-21T11:45:14Z | |
dc.date.available | 2020-06-14T21:35:10Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Geiss, C., & Steinicke, A. (2020). Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver. <i>Stochastics</i>, <i>92</i>(3), 418-453. <a href="https://doi.org/10.1080/17442508.2019.1626859" target="_blank">https://doi.org/10.1080/17442508.2019.1626859</a> | |
dc.identifier.other | CONVID_30945456 | |
dc.identifier.other | TUTKAID_81668 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/68631 | |
dc.description.abstract | We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a Lévy process. In particular, we are interested in generators which satisfy a local Lipschitz condition in the Z and U variable. This includes settings of linear, quadratic and exponential growths in those variables. Extending an idea of Cheridito and Nam to the jump setting and applying comparison theorems for Lévy-driven BSDEs, we show existence, uniqueness, boundedness and Malliavin differentiability of a solution. The pivotal assumption to obtain these results is a boundedness condition on the terminal value ξ and its Malliavin derivative Dξ. Furthermore, we extend existence and uniqueness theorems to cases where the generator is not even locally Lipschitz in U. BSDEs of the latter type find use in exponential utility maximization. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Taylor & Francis | |
dc.relation.ispartofseries | Stochastics | |
dc.rights | In Copyright | |
dc.subject.other | Malliavin-laskenta | |
dc.subject.other | BSDEs with jumps | |
dc.subject.other | locally Lipschitz generator | |
dc.subject.other | quadratic BSDEs | |
dc.subject.other | existence and uniqueness of solutions to BSDEs | |
dc.subject.other | malliavin differentiability of BSDEs | |
dc.title | Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202004202819 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2020-04-20T09:15:07Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 418-453 | |
dc.relation.issn | 1744-2508 | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 92 | |
dc.type.version | acceptedVersion | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | stokastiset prosessit | |
dc.subject.yso | differentiaaliyhtälöt | |
dc.subject.yso | matematiikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11400 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3552 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3160 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1080/17442508.2019.1626859 | |
jyx.fundinginformation | Alexander Steinicke is supported by the Austrian Science Fund (FWF): Project F5508-N26, which is part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”. | |
dc.type.okm | A1 | |