Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver
Geiss, C., & Steinicke, A. (2020). Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver. Stochastics, 92(3), 418-453. https://doi.org/10.1080/17442508.2019.1626859
Julkaistu sarjassa
StochasticsPäivämäärä
2020We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a Lévy process. In particular, we are interested in generators which satisfy a local Lipschitz condition in the Z and U variable. This includes settings of linear, quadratic and exponential growths in those variables. Extending an idea of Cheridito and Nam to the jump setting and applying comparison theorems for Lévy-driven BSDEs, we show existence, uniqueness, boundedness and Malliavin differentiability of a solution. The pivotal assumption to obtain these results is a boundedness condition on the terminal value ξ and its Malliavin derivative Dξ. Furthermore, we extend existence and uniqueness theorems to cases where the generator is not even locally Lipschitz in U. BSDEs of the latter type find use in exponential utility maximization.
Julkaisija
Taylor & FrancisISSN Hae Julkaisufoorumista
1744-2508Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/30945456
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Alexander Steinicke is supported by the Austrian Science Fund (FWF): Project F5508-N26, which is part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme
Koskela, Emilia (2023)In this thesis we study stochastic McKean-Vlasov equations. These are stochastic differential equations where the coefficients depend also on the distribution of the solution. This dependency adds to the complexity of the ... -
Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting
Geiss, Christel; Steinicke, Alexander (Shandong Daxue, 2018)We show that the comparison results for a backward SDE with jumps established in Royer (Stoch. Process. Appl 116: 1358–1376, 2006) and Yin and Mao (J. Math. Anal. Appl 346: 345–358, 2008) hold under more simplified ... -
Decoupling on the Wiener space and variational estimates for BSDEs
Ylinen, Juha (University of Jyväskylä, 2015) -
Unbiased Estimators and Multilevel Monte Carlo
Vihola, Matti (Institute for Operations Research and the Management Sciences, 2018)Multilevel Monte Carlo (MLMC) and recently proposed unbiased estimators are closely related. This connection is elaborated by presenting a new general class of unbiased estimators, which admits previous debiasing schemes ... -
Mean square rate of convergence for random walk approximation of forward-backward SDEs
Geiss, Christel; Labart, Céline; Luoto, Antti (Cambridge University Press (CUP), 2020)Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk from the underlying Brownian motion B by Skorokhod embedding, one can show -convergence of ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.