Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver
Geiss, C., & Steinicke, A. (2020). Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver. Stochastics, 92(3), 418-453. https://doi.org/10.1080/17442508.2019.1626859
Julkaistu sarjassa
StochasticsPäivämäärä
2020We investigate conditions for solvability and Malliavin differentiability of backward stochastic differential equations driven by a Lévy process. In particular, we are interested in generators which satisfy a local Lipschitz condition in the Z and U variable. This includes settings of linear, quadratic and exponential growths in those variables. Extending an idea of Cheridito and Nam to the jump setting and applying comparison theorems for Lévy-driven BSDEs, we show existence, uniqueness, boundedness and Malliavin differentiability of a solution. The pivotal assumption to obtain these results is a boundedness condition on the terminal value ξ and its Malliavin derivative Dξ. Furthermore, we extend existence and uniqueness theorems to cases where the generator is not even locally Lipschitz in U. BSDEs of the latter type find use in exponential utility maximization.
Julkaisija
Taylor & FrancisISSN Hae Julkaisufoorumista
1744-2508Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/30945456
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Alexander Steinicke is supported by the Austrian Science Fund (FWF): Project F5508-N26, which is part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme
Koskela, Emilia (2023)In this thesis we study stochastic McKean-Vlasov equations. These are stochastic differential equations where the coefficients depend also on the distribution of the solution. This dependency adds to the complexity of the ... -
Weighted bounded mean oscillation applied to backward stochastic differential equations
Geiss, Stefan; Ylinen, Juha (Elsevier, 2020)We deduce conditional -estimates for the variation of a solution of a BSDE. Both quadratic and sub-quadratic types of BSDEs are considered, and using the theory of weighted bounded mean oscillation we deduce new tail ... -
Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting
Geiss, Christel; Steinicke, Alexander (Shandong Daxue, 2018)We show that the comparison results for a backward SDE with jumps established in Royer (Stoch. Process. Appl 116: 1358–1376, 2006) and Yin and Mao (J. Math. Anal. Appl 346: 345–358, 2008) hold under more simplified ... -
Markov chain backward stochastic differential equations in modeling insurance policy
Hänninen, Henri (2022)Tässä tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme henkivakuutusta Markovin prosessin avulla, ja varannon määrittelyyn ja mallintamiseen käytämme Markovin ketju BSDE:itä (Markovin ketju takaperoinen ... -
On the uniqueness of a solution and stability of McKean-Vlasov stochastic differential equations
Nykänen, Jani (2020)Tässä tutkielmassa tutustutaan McKeanin-Vlasovin stokastisiin differentiaaliyhtälöihin, jotka yleistävät tavalliset stokastiset differentiaaliyhtälöt lisäämällä kerroinfunktioihin riippuvuuden tuntemattoman prosessin ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.