Mean square rate of convergence for random walk approximation of forward-backward SDEs
Geiss, C., Labart, C., & Luoto, A. (2020). Mean square rate of convergence for random walk approximation of forward-backward SDEs. Advances in Applied Probability, 52(3), 735-771. https://doi.org/10.1017/apr.2020.17
Julkaistu sarjassa
Advances in Applied ProbabilityPäivämäärä
2020Tekijänoikeudet
© Applied Probability Trust 2020
Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk from the underlying Brownian motion B by Skorokhod embedding, one can show -convergence of the corresponding solutions to We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in . The proof relies on an approximative representation of and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by probabilistic methods.
Julkaisija
Cambridge University Press (CUP)ISSN Hae Julkaisufoorumista
0001-8678Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/42325438
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Approximation of heat equation and backward SDEs using random walk : convergence rates
Luoto, Antti (University of Jyväskylä, 2018)This thesis addresses questions related to approximation arising from the fields of stochastic analysis and partial differential equations. Theoretical results regarding convergence rates are obtained by using discretization ... -
Donsker-type theorem for BSDEs : Rate of convergence
Briand, Philippe; Geiss, Christel; Geiss, Stefan; Labart, Céline (International Statistical Institute, 2021)In this paper, we study in the Markovian case the rate of convergence in Wasserstein distance when the solution to a BSDE is approximated by a solution to a BSDE driven by a scaled random walk as introduced in Briand, ... -
Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme
Koskela, Emilia (2023)In this thesis we study stochastic McKean-Vlasov equations. These are stochastic differential equations where the coefficients depend also on the distribution of the solution. This dependency adds to the complexity of the ... -
On Malliavin calculus and approximation of stochastic integrals for Lévy processes
Laukkarinen, Eija (University of Jyväskylä, 2012) -
Markov chain backward stochastic differential equations in modeling insurance policy
Hänninen, Henri (2022)Tässä tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme henkivakuutusta Markovin prosessin avulla, ja varannon määrittelyyn ja mallintamiseen käytämme Markovin ketju BSDE:itä (Markovin ketju takaperoinen ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.