Show simple item record

dc.contributor.authorde Groote, R. P.
dc.contributor.authorBillowes, J.
dc.contributor.authorBinnersley, C. L.
dc.contributor.authorBissell, M. L.
dc.contributor.authorCocolios, T. E.
dc.contributor.authorDay Goodacre, T.
dc.contributor.authorFarooq-Smith, G. J.
dc.contributor.authorFedorov, D. V.
dc.contributor.authorFlanagan, K. T.
dc.contributor.authorFranchoo, S.
dc.contributor.authorGarcia Ruiz, R. F.
dc.contributor.authorGins, W.
dc.contributor.authorHolt, J. D.
dc.contributor.authorKoszorús, Á.
dc.contributor.authorLynch, K. M.
dc.contributor.authorMiyagi, T.
dc.contributor.authorNazarewicz, W.
dc.contributor.authorNeyens, G.
dc.contributor.authorReinhard, P.-G.
dc.contributor.authorRothe, S.
dc.contributor.authorStroke, H. H.
dc.contributor.authorVernon, A. R.
dc.contributor.authorWendt, K. D. A.
dc.contributor.authorWilkins, S. G.
dc.contributor.authorXu, Z. Y.
dc.contributor.authorYang, X. F.
dc.date.accessioned2020-04-17T05:31:17Z
dc.date.available2020-04-17T05:31:17Z
dc.date.issued2020
dc.identifier.citationde Groote, R. P., Billowes, J., Binnersley, C. L., Bissell, M. L., Cocolios, T. E., Day Goodacre, T., Farooq-Smith, G. J., Fedorov, D. V., Flanagan, K. T., Franchoo, S., Garcia Ruiz, R. F., Gins, W., Holt, J. D., Koszorús, Á., Lynch, K. M., Miyagi, T., Nazarewicz, W., Neyens, G., Reinhard, P.-G., . . . Yang, X. F. (2020). Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes. <i>Nature Physics</i>, <i>16</i>(6), 620-624. <a href="https://doi.org/10.1038/s41567-020-0868-y" target="_blank">https://doi.org/10.1038/s41567-020-0868-y</a>
dc.identifier.otherCONVID_35221481
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68571
dc.description.abstractNuclear charge radii globally scale with atomic mass number A as A1∕3, and isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. This odd-even staggering, ubiquitous throughout the nuclear landscape1, varies with the number of protons and neutrons, and poses a substantial challenge for nuclear theory2,3,4. Here, we report measurements of the charge radii of short-lived copper isotopes up to the very exotic 78Cu (with proton number Z = 29 and neutron number N = 49), produced at only 20 ions s–1, using the collinear resonance ionization spectroscopy method at the Isotope Mass Separator On-Line Device facility (ISOLDE) at CERN. We observe an unexpected reduction in the odd-even staggering for isotopes approaching the N = 50 shell gap. To describe the data, we applied models based on nuclear density functional theory5,6 and A-body valence-space in-medium similarity renormalization group theory7,8. Through these comparisons, we demonstrate a relation between the global behaviour of charge radii and the saturation density of nuclear matter, and show that the local charge radii variations, which reflect the many-body polarization effects, naturally emerge from A-body calculations fitted to properties of A ≤ 4 nuclei.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofseriesNature Physics
dc.rightsCC BY 4.0
dc.subject.otherexperimental nuclear physics
dc.subject.othertheoretical nuclear physics
dc.titleMeasurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202004172794
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange620-624
dc.relation.issn1745-2473
dc.relation.numberinseries6
dc.relation.volume16
dc.type.versionpublishedVersion
dc.rights.copyright© CERN 2020
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber654002
dc.relation.grantnumber654002
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/654002/EU//
dc.subject.ysoydinfysiikka
dc.subject.ysoisotoopit
dc.subject.ysokupari
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
jyx.subject.urihttp://www.yso.fi/onto/yso/p6387
jyx.subject.urihttp://www.yso.fi/onto/yso/p19074
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1038/s41567-020-0868-y
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramResearch infrastructures, H2020en
jyx.fundingprogramResearch infrastructures, H2020fi
jyx.fundinginformationWe acknowledge the support of the ISOLDE collaboration and technical teams, and the University of Jyväskylä for the use of the injection-locked cavity. This work was supported by the BriX Research Program no. P7/12 and FWO-Vlaanderen (Belgium) and GOA 15/010 from KU Leuven, FNPMLS ERC Consolidator Grant no. 648381, the Science and Technology Facilities Council consolidated grant ST/P004423/1 and continuation grant ST/L005794/1, the EU Seventh Framework through ENSAR2 (654002), the NSERC and the National Research Council of Canada, and by the Office of Science, US Department of Energy under award numbers DE-SC0013365 and DE-SC0018083 (NUCLEI SciDAC-4 collaboration). We acknowledge the financial aid of the Ed Schneiderman Fund at New York University.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0