Measurement and microscopic description of odd–even staggering of charge radii of exotic copper isotopes
de Groote, R. P.; Billowes, J.; Binnersley, C. L.; Bissell, M. L.; Cocolios, T. E.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedorov, D. V.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W. et al. (2020). Measurement and microscopic description of odd–even staggering of charge radii of exotic copper isotopes. Nature Physics, Early online. DOI: 10.1038/s41567-020-0868-y
Julkaistu sarjassa
Nature PhysicsTekijät
Gins, W. |
Päivämäärä
2020Tekijänoikeudet
© CERN 2020
Nuclear charge radii globally scale with atomic mass number A as A1∕3, and isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. This odd–even staggering, ubiquitous throughout the nuclear landscape1, varies with the number of protons and neutrons, and poses a substantial challenge for nuclear theory2,3,4. Here, we report measurements of the charge radii of short-lived copper isotopes up to the very exotic 78Cu (with proton number Z = 29 and neutron number N = 49), produced at only 20 ions s–1, using the collinear resonance ionization spectroscopy method at the Isotope Mass Separator On-Line Device facility (ISOLDE) at CERN. We observe an unexpected reduction in the odd–even staggering for isotopes approaching the N = 50 shell gap. To describe the data, we applied models based on nuclear density functional theory5,6 and A-body valence-space in-medium similarity renormalization group theory7,8. Through these comparisons, we demonstrate a relation between the global behaviour of charge radii and the saturation density of nuclear matter, and show that the local charge radii variations, which reflect the many-body polarization effects, naturally emerge from A-body calculations fitted to properties of A ≤ 4 nuclei.
...


Julkaisija
Nature Publishing GroupISSN Hae Julkaisufoorumista
1745-2473Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/35221481
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
We acknowledge the support of the ISOLDE collaboration and technical teams, and the University of Jyväskylä for the use of the injection-locked cavity. This work was supported by the BriX Research Program no. P7/12 and FWO-Vlaanderen (Belgium) and GOA 15/010 from KU Leuven, FNPMLS ERC Consolidator Grant no. 648381, the Science and Technology Facilities Council consolidated grant ST/P004423/1 and continuation grant ST/L005794/1, the EU Seventh Framework through ENSAR2 (654002), the NSERC and the National Research Council of Canada, and by the Office of Science, US Department of Energy under award numbers DE-SC0013365 and DE-SC0018083 (NUCLEI SciDAC-4 collaboration). We acknowledge the financial aid of the Ed Schneiderman Fund at New York University.
