Population of lead isotopes in binary reactions using a 94Rb radioactive beam
Čolović, P.; Szilner, S.; Illana, A.; Valiente-Dobón, J. J.; Corradi, L.; Pollarolo, G.; Mijatović, T.; Goasduff, A.; Benzoni, G.; Borge, M. J. G.; Boso, A.; Boukhari, A.; Ceruti, S.; Cubiss, J. G. et al. (2020). Population of lead isotopes in binary reactions using a 94Rb radioactive beam. Physical Review C, 102 (5), 054609. DOI: 10.1103/physrevc.102.054609
Published in
Physical Review CDate
2020Copyright
© Authors, 2020
We measured absolute cross sections for neutron transfer channels populated in the 94Rb+208Pb binary reaction. Cross sections have been extracted identifying directly the lead isotopes with the high efficiency MINIBALL γ-ray array coupled to a particle detector combined with a radioactive 94Rb beam delivered at Elab=6.2 MeV/nucleon by the HIE-ISOLDE facility. We observed sizable cross sections in the neutron-rich mass region, where the heavy partner acquires neutrons. A fair agreement between the measured cross sections with those from GRAZING calculations gives confidence in the cross-section predictions of more neutron-rich nuclei produced via a larger number of transferred nucleons.
Publisher
American Physical Society (APS)ISSN Search the Publication Forum
2469-9985Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/47095549
Metadata
Show full item recordCollections
Related funder(s)
European CommissionFunding program(s)

The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
We acknowledge the support of the ISOLDE Collaboration and technical teams. The authors are grateful to the HIE-ISOLDE staff for the effort made in the production and acceleration of radioactive 94Rb beam. The authors are grateful to the INFN-LNL target laboratory for the excellent targets. This work was partly supported by the HORIZON 2020 ENSAR2 Grant Agreement no. 654002, and Marie Skłodowska-Curie COFUND (EU-CERN) grant agreement no. 665779, and by STFC (U.K.). This work has been supported in part by the Croatian Science Foundation under Project no. 7194 and in part under Project no. IP-2018-01- 1257, and the German BMBF under contract 05P18PKCIA + Verbundprojekt 05P2018.
