Show simple item record

dc.contributor.authorTaipale, Sami
dc.contributor.authorPeltomaa, Elina
dc.contributor.authorSalmi, Pauliina
dc.date.accessioned2020-04-14T11:56:24Z
dc.date.available2020-04-14T11:56:24Z
dc.date.issued2020
dc.identifier.citationTaipale, S., Peltomaa, E., & Salmi, P. (2020). Variation in ω-3 and ω-6 Polyunsaturated Fatty Acids Produced by Different Phytoplankton Taxa at Early and Late Growth Phase. <i>Biomolecules</i>, <i>10</i>(4), Article 559. <a href="https://doi.org/10.3390/biom10040559" target="_blank">https://doi.org/10.3390/biom10040559</a>
dc.identifier.otherCONVID_35205332
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68510
dc.description.abstractPhytoplankton synthesizes essential ω-3 and ω-6 polyunsaturated fatty acids (PUFA) for consumers in the aquatic food webs. Only certain phytoplankton taxa can synthesize eicosapentaenoic (EPA; 20:5ω3) and docosahexaenoic acid (DHA; 22:6ω3), whereas all phytoplankton taxa can synthesize shorter-chain ω-3 and ω-6 PUFA. Here, we experimentally studied how the proportion, concentration (per DW and cell-specific), and production (µg FA L-1 day-1) of ω-3 and ω-6 PUFA varied among six different phytoplankton main groups (16 freshwater strains) and between exponential and stationary growth phase. EPA and DHA concentrations, as dry weight, were similar among cryptophytes and diatoms. However, Cryptomonas erosa had two–27 times higher EPA and DHA content per cell than the other tested cryptophytes, diatoms, or golden algae. The growth was fastest with diatoms, green algae, and cyanobacteria, resulting in high production of medium chain ω-3 and ω-6 PUFA. Even though the dinoflagellate Peridinium cinctum grew slowly, the content of EPA and DHA per cell was high, resulting in a three- and 40-times higher production rate of EPA and DHA than in cryptophytes or diatoms. However, the production of EPA and DHA was 40 and three times higher in cryptophytes and diatoms than in golden algae (chrysophytes and synyrophytes), respectively. Our results show that phytoplankton taxon explains 56%–84% and growth phase explains ~1% of variation in the cell-specific concentration and production of ω-3 and ω-6 PUFA, supporting understanding that certain phytoplankton taxa play major roles in the synthesis of essential fatty acids. Based on the average proportion of PUFA of dry weight during growth, we extrapolated the seasonal availability of PUFA during phytoplankton succession in a clear water lake. This extrapolation demonstrated notable seasonal and interannual variation, the availability of EPA and DHA being prominent in early and late summer, when dinoflagellates or diatoms increased.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesBiomolecules
dc.rightsCC BY 4.0
dc.subject.otherpolyunsaturated fatty acids
dc.subject.otherphytoplankton
dc.subject.otherfreshwater
dc.subject.othernutritional value
dc.titleVariation in ω-3 and ω-6 Polyunsaturated Fatty Acids Produced by Different Phytoplankton Taxa at Early and Late Growth Phase
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202004142731
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineAkvaattiset tieteetfi
dc.contributor.oppiaineAquatic Sciencesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.relation.issn2218-273X
dc.relation.numberinseries4
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 by the authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber615146
dc.relation.grantnumber615146
dc.relation.grantnumber321780
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/615146/EU//
dc.subject.ysomakea vesi
dc.subject.ysoplankton
dc.subject.ysobiosynteesi
dc.subject.ysomikrolevät
dc.subject.ysorasvahapot
dc.subject.ysoomegarasvahapot
dc.subject.ysoravintoarvo
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3793
jyx.subject.urihttp://www.yso.fi/onto/yso/p3053
jyx.subject.urihttp://www.yso.fi/onto/yso/p14405
jyx.subject.urihttp://www.yso.fi/onto/yso/p26977
jyx.subject.urihttp://www.yso.fi/onto/yso/p4800
jyx.subject.urihttp://www.yso.fi/onto/yso/p23183
jyx.subject.urihttp://www.yso.fi/onto/yso/p14080
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/biom10040559
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuropean Commissionen
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramEU:n 7. puiteohjelma (FP7)fi
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramFP7 (EU's 7th Framework Programme)en
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundinginformationThis research was supported by the Academy of Finland research grant 321780 awarded to Pauliina Salmi and by the European Research Council (ERC) CoG project 615146 awarded to Marja Tiirola.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0