Selective Fatty Acid Retention and Turnover in the Freshwater Amphipod Pallaseopsis quadrispinosa
Taipale, S. J., Kers, E., Peltomaa, E., Loehr, J., & Kainz, M. J. (2021). Selective Fatty Acid Retention and Turnover in the Freshwater Amphipod Pallaseopsis quadrispinosa. Biomolecules, 11(3), Article 478. https://doi.org/10.3390/biom11030478
Published in
BiomoleculesDate
2021Copyright
© 2021 the Authors
Gammarid amphipods are a crucial link connecting primary producers with secondary consumers, but little is known about their nutritional ecology. Here we asked how starvation and subsequent feeding on different nutritional quality algae influences fatty acid retention, compound-specific isotopic carbon fractionation, and biosynthesis of ω-3 and ω-6 polyunsaturated fatty acids (PUFA) in the relict gammarid amphipod Pallaseopsis quadrispinosa. The fatty acid profiles of P. quadrispinosa closely matched with those of the dietary green algae after only seven days of refeeding, whereas fatty acid patterns of P. quadrispinosa were less consistent with those of the diatom diet. This was mainly due to P. quadrispinosa suffering energy limitation in the diatom treatment which initiated the metabolization of 16:1ω7 and partly 18:1ω9 for energy, but retained high levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) similar to those found in wild-caught organisms. Moreover, α-linolenic acid (ALA) from green algae was mainly stored and not allocated to membranes at high levels nor biosynthesized to EPA. The arachidonic acid (ARA) content in membrane was much lower than EPA and P. quadrispinosa was able to biosynthesize long-chain ω-6 PUFA from linoleic acid (LA). Our experiment revealed that diet quality has a great impact on fatty acid biosynthesis, retention and turnover in this consumer.
...


Publisher
MDPIISSN Search the Publication Forum
2218-273XKeywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/66350252
Metadata
Show full item recordCollections
Additional information about funding
This research was supported by Lammi Biological Station, University of Helsinki.License
Related items
Showing items with similar title or keywords.
-
Lowered nutritional quality of prey decrease the growth and biomolecule content of rainbow trout fry
Taipale, Sami J.; Pulkkinen, Katja; Keva, Ossi; Kainz, Martin J.; Nykänen, Hannu (Elsevier Inc., 2022)Diet quality is crucial for the development of offspring. Here, we examined how the nutritional quality of prey affects somatic growth and the lipid, carbohydrate, protein, amino acid, and polyunsaturated fatty acid content ... -
Poor nutritional quality of primary producers and zooplankton driven by eutrophication is mitigated at upper trophic levels
Taipale, Sami Johan; Ventelä, Anne‐Mari; Litmanen, Jaakko; Anttila, Lauri (John Wiley & Sons, 2022)Eutrophication and rising water temperature in freshwaters may increase the total production of a lake while simultaneously reducing the nutritional quality of food web components. We evaluated how cyanobacteria blooms, ... -
Lake restoration influences nutritional quality of algae and consequently Daphnia biomass
Taipale, Sami J.; Kuoppamäki, K.; Strandberg, U.; Peltomaa, E.; Vuorio, K. (Springer, 2020)Food quality is one of the key factors influencing zooplankton population dynamics. Eutrophication drives phytoplankton communities toward the dominance of cyanobacteria, which means a decrease in the availability of sterols ... -
Eutrophication reduces the nutritional value of phytoplankton in boreal lakes
Taipale, Sami J.; Vuorio, Kristiina; Aalto, Sanni L.; Peltomaa, Elina; Tiirola, Marja (Elsevier, 2019)Eutrophication (as an increase in total phosphorus [TP]) increases harmful algal blooms and reduces the proportion of high-quality phytoplankton in seston and the content of ω-3 long-chain polyunsaturated fatty acids ... -
The Importance of Phytoplankton Biomolecule Availability for Secondary Production
Peltomaa, Elina T.; Aalto, Sanni L.; Vuorio, Kristiina M.; Taipale, Sami (Frontiers Media S.A., 2017)The growth and reproduction of animals is affected by their access to resources. In aquatic ecosystems, the availability of essential biomolecules for filter-feeding zooplankton depends greatly on phytoplankton. Here, we ...