Lowered nutritional quality of prey decrease the growth and biomolecule content of rainbow trout fry
Taipale, S. J., Pulkkinen, K., Keva, O., Kainz, M. J., & Nykänen, H. (2022). Lowered nutritional quality of prey decrease the growth and biomolecule content of rainbow trout fry. Comparative Biochemistry and Physiology B: Biochemistry and Molecular Biology, 262, Article 110767. https://doi.org/10.1016/j.cbpb.2022.110767
Date
2022Discipline
YmpäristötiedeAkvaattiset tieteetResurssiviisausyhteisöEnvironmental ScienceAquatic SciencesSchool of Resource WisdomCopyright
© 2022 the Authors
Diet quality is crucial for the development of offspring. Here, we examined how the nutritional quality of prey affects somatic growth and the lipid, carbohydrate, protein, amino acid, and polyunsaturated fatty acid content of rainbow trout (Oncorhynchus mykiss) fry using a three-trophic-level experimental setup. Diets differed especially in their content of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are physiologically essential polyunsaturated fatty acids for a fish fry. Trout were fed with an artificial diet (fish feed, DHA-rich), marine zooplankton diet (krill/Mysis, DHA-rich), or freshwater zooplankton diet (Daphnia, Cladocera, DHA-deficient). The Daphnia were grown either on a poor, intermediate, or high-quality algal/microbial diet simulating potential changes in the nutritional prey quality (EPA-content). Trout fed with the fish feed or marine zooplankton entirely replaced their muscle tissue composition with compounds of dietary origin. In contrast, fish tissue renewal was only partial in fish fed any Daphnia diet. Furthermore, fish grew five times faster on marine zooplankton than on any of the Daphnia diets. This was mainly explained by the higher dietary contents of arachidonic acid (ARA), EPA, and DHA, but also by the higher content of some amino acids in the marine zooplankton than in the Daphnia diets. Moreover, fatty acid-specific carbon isotopes revealed that trout fry could not biosynthesize ARA, EPA, or DHA efficiently from their precursors. Our results suggest that changes in the zooplankton and macroinvertebrate communities' structure in freshwater habitats from DHA-rich to DHA-poor species may reduce the somatic growth of fish fry.
...
Publisher
Elsevier Inc.ISSN Search the Publication Forum
1096-4959Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/148953223
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
This research was supported by the Academy of Finland research grants 304313 to Hannu Nykänen and 333564 to Sami J. Taipale.License
Related items
Showing items with similar title or keywords.
-
Poor nutritional quality of primary producers and zooplankton driven by eutrophication is mitigated at upper trophic levels
Taipale, Sami Johan; Ventelä, Anne‐Mari; Litmanen, Jaakko; Anttila, Lauri (John Wiley & Sons, 2022)Eutrophication and rising water temperature in freshwaters may increase the total production of a lake while simultaneously reducing the nutritional quality of food web components. We evaluated how cyanobacteria blooms, ... -
Lake restoration influences nutritional quality of algae and consequently Daphnia biomass
Taipale, Sami J.; Kuoppamäki, K.; Strandberg, U.; Peltomaa, E.; Vuorio, K. (Springer, 2020)Food quality is one of the key factors influencing zooplankton population dynamics. Eutrophication drives phytoplankton communities toward the dominance of cyanobacteria, which means a decrease in the availability of sterols ... -
Eutrophication and browning influence Daphnia nutritional ecology
Taipale, Sami J.; Aalto, Sanni L.; Galloway, Aaron W. E.; Kuoppamäki, Kirsi; Nzobeuh, Polain; Peltomaa, Elina (Taylor & Francis, 2019)Climate change and land-use practices can enhance lake eutrophication and browning, which influence phytoplankton composition by decreasing the availability of food high in nutritional quality (algae) and increasing the ... -
Variation in ω-3 and ω-6 Polyunsaturated Fatty Acids Produced by Different Phytoplankton Taxa at Early and Late Growth Phase
Taipale, Sami; Peltomaa, Elina; Salmi, Pauliina (MDPI, 2020)Phytoplankton synthesizes essential ω-3 and ω-6 polyunsaturated fatty acids (PUFA) for consumers in the aquatic food webs. Only certain phytoplankton taxa can synthesize eicosapentaenoic (EPA; 20:5ω3) and docosahexaenoic ... -
Interacting effects of simulated eutrophication, temperature increase, and microplastic exposure on Daphnia
Hiltunen, Minna; Vehniäinen, Eeva-Riikka; Kukkonen, Jussi V. K. (Elsevier BV, 2021)The effects of multiple stressors are difficult to separate in field studies, and their interactions may be hard to predict if studied in isolation. We studied the effects of decreasing food quality (increase in cyanobacteria ...