Näytä suppeat kuvailutiedot

dc.contributor.authorAalto, Sanni L.
dc.contributor.authorSuurnäkki, Suvi
dc.contributor.authorvon Ahnen, Mathis
dc.contributor.authorSiljanen, Henri M. P.
dc.contributor.authorPedersen, Per Bovbjerg
dc.contributor.authorTiirola, Marja
dc.date.accessioned2020-03-30T11:41:35Z
dc.date.available2020-03-30T11:41:35Z
dc.date.issued2020
dc.identifier.citationAalto, S. L., Suurnäkki, S., von Ahnen, M., Siljanen, H. M. P., Pedersen, P. B., & Tiirola, M. (2020). Nitrate removal microbiology in woodchip bioreactors : a case-study with full-scale bioreactors treating aquaculture effluents. <i>Science of the Total Environment</i>, <i>723</i>, Article 138093. <a href="https://doi.org/10.1016/j.scitotenv.2020.138093" target="_blank">https://doi.org/10.1016/j.scitotenv.2020.138093</a>
dc.identifier.otherCONVID_35104534
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68374
dc.description.abstractWoodchip bioreactors are viable low-cost nitrate (NO3−) removal applications for treating agricultural and aquaculture discharges. The active microbial biofilms growing on woodchips are conducting nitrogen (N) removal, reducing NO3− while oxidizing the carbon (C) from woodchips. However, bioreactor age, and changes in the operating conditions or in the microbial community might affect the NO3− removal as well as potentially promote nitrous oxide (N2O) production through either incomplete denitrification or dissimilatory NO3− reduction to ammonium (DNRA). Here, we combined stable isotope approach, amplicon sequencing, and captured metagenomics for studying the potential NO3− removal rates, and the abundance and community composition of microbes involved in N transformation processes in the three different full-scale woodchip bioreactors treating recirculating aquaculture system (RAS) effluents. We confirmed denitrification producing di‑nitrogen gas (N2) to be the primary NO3− removal pathway, but found that 6% of NO3− could be released as N2O under high NO3− concentrations and low amounts of bioavailable C, whereas DNRA rates tend to increase with the C amount. The abundance of denitrifiers was equally high between the studied bioreactors, yet the potential NO3− removal rates were linked to the denitrifying community diversity. The same core proteobacterial groups were driving the denitrification, while Bacteroidetes dominated the DNRA carrying microbes in all the three bioreactors studied. Altogether, our results suggest that woodchip bioreactors have a high genetic potential for NO3− removal through a highly abundant and diverse denitrifying community, but that the rates and dynamics between the NO3− removal pathways depend on the other factors (e.g., bioreactor design, operating conditions, and the amount of bioavailable C in relation to the incoming NO3− concentrations).en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesScience of the Total Environment
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherdenitrification
dc.subject.otherDNRA
dc.subject.othernitrogen removal
dc.subject.othernitrous oxide
dc.subject.otherrecirculation aquaculture systems
dc.titleNitrate removal microbiology in woodchip bioreactors : a case-study with full-scale bioreactors treating aquaculture effluents
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202003302587
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineAkvaattiset tieteetfi
dc.contributor.oppiaineYmpäristötiedefi
dc.contributor.oppiaineAquatic Sciencesen
dc.contributor.oppiaineEnvironmental Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0048-9697
dc.relation.volume723
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber615146
dc.relation.grantnumber615146
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/615146/EU//
dc.subject.ysodityppioksidi
dc.subject.ysodenitrifikaatio
dc.subject.ysovesiviljely (kalatalous)
dc.subject.ysobioreaktorit
dc.subject.ysotyppi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15107
jyx.subject.urihttp://www.yso.fi/onto/yso/p12487
jyx.subject.urihttp://www.yso.fi/onto/yso/p5099
jyx.subject.urihttp://www.yso.fi/onto/yso/p37822
jyx.subject.urihttp://www.yso.fi/onto/yso/p10988
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.scitotenv.2020.138093
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramFP7 (EU's 7th Framework Programme)en
jyx.fundingprogramEU:n 7. puiteohjelma (FP7)fi
jyx.fundinginformationThe work was supported by the funding of BONUS CLEANAQ project for PBP, European Research Council (ERC) CoG project 615146 for MT, Academy of Finland project 310302 for SLA and 290315 for HS.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0