Nitrate removal microbiology in woodchip bioreactors : a case-study with full-scale bioreactors treating aquaculture effluents
Aalto, S. L., Suurnäkki, S., von Ahnen, M., Siljanen, H. M. P., Pedersen, P. B., & Tiirola, M. (2020). Nitrate removal microbiology in woodchip bioreactors : a case-study with full-scale bioreactors treating aquaculture effluents. Science of the Total Environment, 723, Article 138093. https://doi.org/10.1016/j.scitotenv.2020.138093
Published in
Science of the Total EnvironmentAuthors
Date
2020Copyright
© 2020 Elsevier B.V.
Woodchip bioreactors are viable low-cost nitrate (NO3−) removal applications for treating agricultural and aquaculture discharges. The active microbial biofilms growing on woodchips are conducting nitrogen (N) removal, reducing NO3− while oxidizing the carbon (C) from woodchips. However, bioreactor age, and changes in the operating conditions or in the microbial community might affect the NO3− removal as well as potentially promote nitrous oxide (N2O) production through either incomplete denitrification or dissimilatory NO3− reduction to ammonium (DNRA). Here, we combined stable isotope approach, amplicon sequencing, and captured metagenomics for studying the potential NO3− removal rates, and the abundance and community composition of microbes involved in N transformation processes in the three different full-scale woodchip bioreactors treating recirculating aquaculture system (RAS) effluents. We confirmed denitrification producing di‑nitrogen gas (N2) to be the primary NO3− removal pathway, but found that 6% of NO3− could be released as N2O under high NO3− concentrations and low amounts of bioavailable C, whereas DNRA rates tend to increase with the C amount. The abundance of denitrifiers was equally high between the studied bioreactors, yet the potential NO3− removal rates were linked to the denitrifying community diversity. The same core proteobacterial groups were driving the denitrification, while Bacteroidetes dominated the DNRA carrying microbes in all the three bioreactors studied. Altogether, our results suggest that woodchip bioreactors have a high genetic potential for NO3− removal through a highly abundant and diverse denitrifying community, but that the rates and dynamics between the NO3− removal pathways depend on the other factors (e.g., bioreactor design, operating conditions, and the amount of bioavailable C in relation to the incoming NO3− concentrations).
...


Publisher
ElsevierISSN Search the Publication Forum
0048-9697Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/35104534
Metadata
Show full item recordCollections
Related funder(s)
European CommissionFunding program(s)
FP7 (EU's 7th Framework Programme)
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
The work was supported by the funding of BONUS CLEANAQ project for PBP, European Research Council (ERC) CoG project 615146 for MT, Academy of Finland project 310302 for SLA and 290315 for HS.License
Related items
Showing items with similar title or keywords.
-
Salinity affects nitrate removal and microbial composition of denitrifying woodchip bioreactors treating recirculating aquaculture system effluents
von Ahnen, Mathis; Aalto, Sanni L.; Suurnäkki, Suvi; Tiirola, Marja; Pedersen, Per Bovbjerg (Elsevier BV, 2019)This study investigated the effect of salinity on microbial composition and denitrification capacity of woodchip bioreactors treating recirculating aquaculture system (RAS) effluents. Twelve laboratory-scale woodchip ... -
Microbial communities in full-scale woodchip bioreactors treating aquaculture effluents
Aalto, Sanni L.; Suurnäkki, Suvi; von Ahnen, Mathis; Tiirola, Marja; Bovbjerg Pedersen, Per (Elsevier Ltd., 2022)Woodchip bioreactors are being successfully applied to remove nitrate from commercial land-based recirculating aquaculture system (RAS) effluents. In order to understand and optimize the overall function of these bioreactors, ... -
Enhanced nitrogen removal of low carbon wastewater in denitrification bioreactors by utilizing industrial waste toward circular economy
Kiani, Sepideh; Kujala, Katharina; Pulkkinen, Jani; Aalto, Sanni L.; Suurnäkki, Suvi; Kiuru, Tapio; Tiirola, Marja; Kløve, Bjørn; Ronkanen, Anna-Kaisa (Elsevier, 2020)Aquaculture needs practical solutions for nutrient removal to achieve sustainable fish production. Passive denitrifying bioreactors may provide an ecological, low-cost and low-maintenance approach for wastewater nitrogen ... -
The effects of different combinations of fixed and moving bed bioreactors on rainbow trout (Oncorhynchus mykiss) growth and health, water quality and nitrification in recirculating aquaculture systems
Pulkkinen, Jani T.; Eriksson-Kallio, Anna M.; Aalto, Sanni L.; Tiirola, Marja; Koskela, Juha; Kiuru, Tapio; Vielma, Jouni (Elsevier BV, 2019)The effect of bioreactor design on nitrification efficiency has been well studied, but less is known about the overall impacts on water quality. Besides nitrification, submerged fixed bed bioreactors (FBBR) trap fine solid ... -
Discharge management in fresh and brackish water RAS : Combined phosphorus removal by organic flocculants and nitrogen removal in woodchip reactors
Kujala, Kukka; Pulkkinen, Jani; Vielma, Jouni (Elsevier, 2020)The current study combined P and N removal using organic flocculant chemicals and woodchip bioreactors in both freshwater and brackish water (7 ppm) recirculating aquaculture systems (RAS). The use of carbon (C) containing ...