Discharge management in fresh and brackish water RAS : Combined phosphorus removal by organic flocculants and nitrogen removal in woodchip reactors
Kujala, K., Pulkkinen, J., & Vielma, J. (2020). Discharge management in fresh and brackish water RAS : Combined phosphorus removal by organic flocculants and nitrogen removal in woodchip reactors. Aquacultural Engineering, 90, Article 102095. https://doi.org/10.1016/j.aquaeng.2020.102095
Published in
Aquacultural EngineeringDate
2020Copyright
© 2020 Elsevier BV
The current study combined P and N removal using organic flocculant chemicals and woodchip bioreactors in both freshwater and brackish water (7 ppm) recirculating aquaculture systems (RAS). The use of carbon (C) containing flocculant chemicals in the process was hypothesized to further stimulate C-demanding N removal (denitrification) in bioreactors. The trial of combined P and N removal consisted of four treatments: freshwater and brackish water RAS with and without the addition of supernatant from flocculation process to the woodchip reactor. Duplicate woodchip reactors were used per treatment and the trial was run for six weeks. 56 % and 49 % of P was removed from fresh and brackish sludge water, respectively. The nitrate-N (NO3-N) removal rate was improved in the treatment when supernatant from flocculation process was used together with RAS discharge water when compared against the control. In brackish water RAS, the improvement was more pronounced (from 6.6 to 16.5 g NO3-N m-3 d-1) than in freshwater RAS (from 5.1 to 6.5 NO3-N m-3 d-1). In the freshwater bioreactors using supernatant, N was largely discharged as a nitrite-N (NO2-N). High NO2-N concentrations in freshwater reactors allude to incomplete denitrification reactions taking place. The results suggest that the organic flocculants did provide an additional C source for denitrification, which improved the N-removal process. However, in freshwater RAS this might have been partly due to untargeted processes such as DNRA (dissimilatory nitrate reduction to ammonium), and/or insufficient denitrification reactions taking place (excessive NO2-N production).
...


Publisher
ElsevierISSN Search the Publication Forum
0144-8609Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/35696286
Metadata
Show full item recordCollections
Additional information about funding
This work resulted from the BONUS CLEANAQ project and was supported by BONUS (Art 185), funded jointly by the EU and national funding institutions of Finland (Academy of Finland), Sweden (Vinnova) and Denmark (Innovation Fund Denmark IFD).License
Related items
Showing items with similar title or keywords.
-
Salinity affects nitrate removal and microbial composition of denitrifying woodchip bioreactors treating recirculating aquaculture system effluents
von Ahnen, Mathis; Aalto, Sanni L.; Suurnäkki, Suvi; Tiirola, Marja; Pedersen, Per Bovbjerg (Elsevier BV, 2019)This study investigated the effect of salinity on microbial composition and denitrification capacity of woodchip bioreactors treating recirculating aquaculture system (RAS) effluents. Twelve laboratory-scale woodchip ... -
Microbial communities in full-scale woodchip bioreactors treating aquaculture effluents
Aalto, Sanni L.; Suurnäkki, Suvi; von Ahnen, Mathis; Tiirola, Marja; Bovbjerg Pedersen, Per (Elsevier Ltd., 2022)Woodchip bioreactors are being successfully applied to remove nitrate from commercial land-based recirculating aquaculture system (RAS) effluents. In order to understand and optimize the overall function of these bioreactors, ... -
Enhanced nitrogen removal of low carbon wastewater in denitrification bioreactors by utilizing industrial waste toward circular economy
Kiani, Sepideh; Kujala, Katharina; Pulkkinen, Jani; Aalto, Sanni L.; Suurnäkki, Suvi; Kiuru, Tapio; Tiirola, Marja; Kløve, Bjørn; Ronkanen, Anna-Kaisa (Elsevier, 2020)Aquaculture needs practical solutions for nutrient removal to achieve sustainable fish production. Passive denitrifying bioreactors may provide an ecological, low-cost and low-maintenance approach for wastewater nitrogen ... -
Nitrate removal microbiology in woodchip bioreactors : a case-study with full-scale bioreactors treating aquaculture effluents
Aalto, Sanni L.; Suurnäkki, Suvi; von Ahnen, Mathis; Siljanen, Henri M. P.; Pedersen, Per Bovbjerg; Tiirola, Marja (Elsevier, 2020)Woodchip bioreactors are viable low-cost nitrate (NO3−) removal applications for treating agricultural and aquaculture discharges. The active microbial biofilms growing on woodchips are conducting nitrogen (N) removal, ... -
The effects of different combinations of fixed and moving bed bioreactors on rainbow trout (Oncorhynchus mykiss) growth and health, water quality and nitrification in recirculating aquaculture systems
Pulkkinen, Jani T.; Eriksson-Kallio, Anna M.; Aalto, Sanni L.; Tiirola, Marja; Koskela, Juha; Kiuru, Tapio; Vielma, Jouni (Elsevier BV, 2019)The effect of bioreactor design on nitrification efficiency has been well studied, but less is known about the overall impacts on water quality. Besides nitrification, submerged fixed bed bioreactors (FBBR) trap fine solid ...