dc.contributor.author | Parkkonen, Jouni | |
dc.contributor.author | Paulin, Frédéric | |
dc.date.accessioned | 2020-03-27T11:53:04Z | |
dc.date.available | 2020-04-20T21:35:17Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Parkkonen, J., & Paulin, F. (2020). On the nonarchimedean quadratic Lagrange spectra. <i>Mathematische Zeitschrift</i>, <i>294</i>(3-4), 1065-1084. <a href="https://doi.org/10.1007/s00209-019-02300-1" target="_blank">https://doi.org/10.1007/s00209-019-02300-1</a> | |
dc.identifier.other | CONVID_30724989 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/68346 | |
dc.description.abstract | We study Diophantine approximation in completions of functions fields over finite fields, and in particular in fields of formal Laurent series over finite fields. We introduce a Lagrange spectrum for the approximation by orbits of quadratic irrationals under the modular group. We give nonarchimedean analogs of various well known results in the real case: the closedness and boundedness of the Lagrange spectrum, the existence of a Hall ray, as well as computations of various Hurwitz constants. We use geometric methods of group actions on Bruhat-Tits trees. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Berlin Heidelberg | |
dc.relation.ispartofseries | Mathematische Zeitschrift | |
dc.rights | In Copyright | |
dc.subject.other | quadratic irrational | |
dc.subject.other | continued fraction expansion | |
dc.subject.other | positive characteristic | |
dc.subject.other | formal Laurent series | |
dc.subject.other | Lagrange spectrum | |
dc.subject.other | Hurwitz constant | |
dc.subject.other | Hall ray | |
dc.title | On the nonarchimedean quadratic Lagrange spectra | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202003252548 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2020-03-25T13:15:03Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1065-1084 | |
dc.relation.issn | 0025-5874 | |
dc.relation.numberinseries | 3-4 | |
dc.relation.volume | 294 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Springer-Verlag GmbH Germany, part of Springer Nature 2019 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | ryhmäteoria | |
dc.subject.yso | lukuteoria | |
dc.subject.yso | algebra | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12497 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1988 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12498 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1007/s00209-019-02300-1 | |
jyx.fundinginformation | This work was supported by the French-Finnish CNRS grant PICS No 6950. | |
dc.type.okm | A1 | |