Näytä suppeat kuvailutiedot

dc.contributor.authorParkkonen, Jouni
dc.contributor.authorPaulin, Frédéric
dc.date.accessioned2020-03-27T11:53:04Z
dc.date.available2020-04-20T21:35:17Z
dc.date.issued2020
dc.identifier.citationParkkonen, J., & Paulin, F. (2020). On the nonarchimedean quadratic Lagrange spectra. <i>Mathematische Zeitschrift</i>, <i>294</i>(3-4), 1065-1084. <a href="https://doi.org/10.1007/s00209-019-02300-1" target="_blank">https://doi.org/10.1007/s00209-019-02300-1</a>
dc.identifier.otherCONVID_30724989
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68346
dc.description.abstractWe study Diophantine approximation in completions of functions fields over finite fields, and in particular in fields of formal Laurent series over finite fields. We introduce a Lagrange spectrum for the approximation by orbits of quadratic irrationals under the modular group. We give nonarchimedean analogs of various well known results in the real case: the closedness and boundedness of the Lagrange spectrum, the existence of a Hall ray, as well as computations of various Hurwitz constants. We use geometric methods of group actions on Bruhat-Tits trees.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Berlin Heidelberg
dc.relation.ispartofseriesMathematische Zeitschrift
dc.rightsIn Copyright
dc.subject.otherquadratic irrational
dc.subject.othercontinued fraction expansion
dc.subject.otherpositive characteristic
dc.subject.otherformal Laurent series
dc.subject.otherLagrange spectrum
dc.subject.otherHurwitz constant
dc.subject.otherHall ray
dc.titleOn the nonarchimedean quadratic Lagrange spectra
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202003252548
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2020-03-25T13:15:03Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1065-1084
dc.relation.issn0025-5874
dc.relation.numberinseries3-4
dc.relation.volume294
dc.type.versionacceptedVersion
dc.rights.copyright© Springer-Verlag GmbH Germany, part of Springer Nature 2019
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoryhmäteoria
dc.subject.ysolukuteoria
dc.subject.ysoalgebra
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12497
jyx.subject.urihttp://www.yso.fi/onto/yso/p1988
jyx.subject.urihttp://www.yso.fi/onto/yso/p12498
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s00209-019-02300-1
jyx.fundinginformationThis work was supported by the French-Finnish CNRS grant PICS No 6950.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright