Pair correlations of logarithms of complex lattice points
Parkkonen, J., & Paulin, F. (2024). Pair correlations of logarithms of complex lattice points. Research in Number Theory, 10(2), Article 24. https://doi.org/10.1007/s40993-023-00493-3
Julkaistu sarjassa
Research in Number TheoryPäivämäärä
2024Tekijänoikeudet
© 2024 the Authors
We study the correlations of pairs of complex logarithms of Z-lattice points in C at various scalings, proving the existence of pair correlation functions. We prove that at the linear scaling, the pair correlations exhibit level repulsion, as it sometimes occurs in statistical physics. We prove total loss of mass phenomena at superlinear scalings, and Poissonian behaviour at sublinear scalings. The case of Euler weights has applications to the pair correlation of the lengths of common perpendicular geodesic arcs from the maximal Margulis cusp neighbourhood to itself in the Bianchi orbifold PSL2(Z[i])\H3 R.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
2522-0160Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/207607162
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This research was supported by the French-Finnish CNRS IEA BARP and PaCAP. Open Access funding provided by University of Jyväskylä (JYU).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Sectorial Mertens and Mirsky formulae for imaginary quadratic number fields
Parkkonen, Jouni; Paulin, Frédéric (Birkhäuser, 2024)We extend formulae of Mertens and Mirsky on the asymptotic behaviour of the usual Euler function to the Euler functions of principal rings of integers of imaginary quadratic number fields, giving versions in angular sectors ... -
On the nonarchimedean quadratic Lagrange spectra
Parkkonen, Jouni; Paulin, Frédéric (Springer Berlin Heidelberg, 2020)We study Diophantine approximation in completions of functions fields over finite fields, and in particular in fields of formal Laurent series over finite fields. We introduce a Lagrange spectrum for the approximation by ... -
Logarithmic mean inequality for generalized trigonometric and hyperbolic functions
Bhayo, Barkat; Yin, Li (Editura Scientia; Universitatea Sapientia Cluj-Napoca, 2015)In this paper we study the convexity and concavity properties of generalized trigonometric and hyperbolic functions in case of Logarithmic mean. -
High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method
Hegele, L. A.; Scagliarini, A.; Sbragaglia, M.; Mattila, Keijo; Philippi, P. C.; Puleri, D. F.; Gounley, J.; Randles, A. (American Physical Society, 2018)We present a boundary condition scheme for the lattice Boltzmann method that has significantly improved stability for modeling turbulent flows while maintaining excellent parallel scalability. Simulations of a ... -
On several notions of complexity of polynomial progressions
Kuca, Borys (Cambridge University Press, 2023)For a polynomial progression (x, x + P1(y), . . . , x + Pt(y)), we define four notions of complexity: Host Kra complexity, Weyl complexity, true complexity and algebraic complexity. The first two describe the smallest ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.