Testing the effectiveness of pyrazine defences against spiders
Burdfield-Steel, E. R., Schneider, J. M., Mappes, J., & Dobler, S. (2020). Testing the effectiveness of pyrazine defences against spiders. Chemoecology, 30(4), 139-146. https://doi.org/10.1007/s00049-020-00305-5
Published in
ChemoecologyDate
2020Discipline
Ekologia ja evoluutiobiologiaBiologisten vuorovaikutusten huippututkimusyksikköEcology and Evolutionary BiologyCentre of Excellence in Biological Interactions ResearchCopyright
© 2020 the Authors
Insects live in a dangerous world and may fall prey to a wide variety of predators, encompassing multiple taxa. As a result, selection may favour defences that are effective against multiple predator types, or target-specific defences that can reduce predation risk from particular groups of predators. Given the variation in sensory systems and hunting tactics, in particular between vertebrate and invertebrate predators, it is not always clear whether defences, such as chemical defences, that are effective against one group will be so against another. Despite this, the majority of research to date has focused on the role of a single predator species when considering the evolution of defended prey. Here we test the effectiveness of the chemical defences of the wood tiger moth, a species previously shown to have defensive chemicals targeted towards ants, against a common invertebrate predator: spiders. We presented both live moths and artificial prey containing their defensive fluids to female Trichonephila senegalensis and recorded their reactions. We found that neither of the moth’s two defensive fluids were able to repel the spiders, and confirmed that methoxypyrazines, a major component of the defences of both the wood tiger moth and many insect species, are ineffective against web-building spiders. Our results highlight the variability between predator taxa in their susceptibility to chemical defences, which can in part explain the vast variation in these chemicals seen in insects, and the existence of multiple defences in a single species.
...


Publisher
SpringerISSN Search the Publication Forum
0937-7409Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/34936529
Metadata
Show full item recordCollections
Additional information about funding
EBS was funded by the Centre of Excellence in Biological Interactions, via the Academy of Finland (Project No. 252411). The exchange between Universität Hamburg and the University of Jyväskylä was funded by the Landesforschungsförderung Hamburg, LFF OS 16-2014.License
Related items
Showing items with similar title or keywords.
-
Multiple modalities in insect warning displays have additive effects against wild avian predators
Rojas Zuluaga, Bibiana; Mappes, Johanna; E., Burdfield-Steel (Springer, 2019)Allocation to different components of defence has been suggested as an explanation for the existence of multiple aposematic morphs in a single population. We tested whether there are trade-offs between warning colouration ... -
De novo Synthesis of Chemical Defenses in an Aposematic Moth
Burdfield-Steel, Emily; Pakkanen, Hannu; Rojas Zuluaga, Bibiana; Galarza, Juan; Mappes, Johanna (Oxford University Press, 2018)Many animals protect themselves from predation with chemicals, both self-made or sequestered from their diet. The potential drivers of the diversity of these chemicals have been long studied, but our knowledge of these ... -
Can warning signals be honest? : wing colouration and the strength of chemical defence in the female wood tiger moth (Parasemia plataginis)
Brain, Morgan (2016)The warning displays of aposematic organisms signal to predators that they possess a secondary defence and are unprofitable. Within species variation exists in the strength of the signal and defence. As natural selection ... -
Defense against predators incurs high reproductive costs for the aposematic moth Arctia plantaginis
Lindstedt, Carita; Suisto, Kaisa; Burdfield-Steel, Emily; Winters, Anne E.; Mappes, Johanna (Oxford University Press, 2020)To understand how variation in warning displays evolves and is maintained, we need to understand not only how perceivers of these traits select color and toxicity but also the sources of the genetic and phenotypic variation ... -
Insect coloration as a defence mechanism against visually hunting predators
Lyytinen, Anne (2001)Insects utilise a wide variety of defence coloration including crypsis, aposematic coloration, and deflection patterns. The traditional view is that animals can maximise their cryptic coloration only on one background. I ...