De novo Synthesis of Chemical Defenses in an Aposematic Moth
Burdfield-Steel, E., Pakkanen, H., Rojas Zuluaga, B., Galarza, J., & Mappes, J. (2018). De novo Synthesis of Chemical Defenses in an Aposematic Moth. Journal of Insect Science, 18(2), Article 28. https://doi.org/10.1093/jisesa/iey020
Julkaistu sarjassa
Journal of Insect ScienceTekijät
Päivämäärä
2018Oppiaine
Ekologia ja evoluutiobiologiaSoveltava kemiaEcology and Evolutionary BiologyApplied ChemistryTekijänoikeudet
© the Authors, 2018. This is an open access article distributed under the terms of the Creative Commons License.
Many animals protect themselves from predation with chemicals, both self-made or sequestered from their diet. The potential drivers of the diversity of these chemicals have been long studied, but our knowledge of these chemicals and their acquisition mode is heavily based on specialist herbivores that sequester their defenses. The wood tiger moth (Arctia plantaginis, Linnaeus, 1758) is a well-studied aposematic species, but the nature of its chemical defenses has not been fully described . Here, we report the presence of two methoxypyrazines, 2-sec-butyl-3-methoxypyrazine and 2-isobutyl-3-methoxypyrazine, in the moths’ defensive secretions. By raising larvae on an artificial diet, we confirm, for the first time, that their defensive compounds are produced de novo rather than sequestered from their diet. Pyrazines are known for their defensive function in invertebrates due to their distinctive odor, inducing aversion and facilitating predator learning. While their synthesis has been suspected, it has never previously been experimentally confirmed. Our results highlight the importance of considering de novo synthesis, in addition to sequestration, when studying the defensive capabilities of insects and other invertebrates.
...
Julkaisija
Oxford University PressISSN Hae Julkaisufoorumista
1536-2442Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28019391
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The Center of Excellence in Biological Interactions provided funding.Lisenssi
Ellei muuten mainita, aineiston lisenssi on © the Authors, 2018. This is an open access article distributed under the terms of the Creative Commons License.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The price of safety : food deprivation in early life influences the efficacy of chemical defence in an aposematic moth
Burdfield-Steel, Emily; Brain, Morgan; Rojas Zuluaga, Bibiana; Mappes, Johanna (Wiley-Blackwell Publishing Ltd., 2019)Aposematism is the combination of a primary signal with a secondary defence that predators must learn to associate with one another. However, variation in the level of defence, both within and between species, is very ... -
Diet influences resource allocation in chemical defence but not melanin synthesis in an aposematic moth
Ottocento, Cristina; Rojas, Bibiana; Burdfield-Steel, Emily; Furlanetto, Miriam; Nokelainen, Ossi; Winters, Sandra; Mappes, Johanna (The Company of Biologists, 2024)For animals that synthesise their chemical compounds de novo, resources, particularly proteins, can influence investment in chemical defences and nitrogen-based wing colouration such as melanin. Competing for the same ... -
Testing the effectiveness of pyrazine defences against spiders
Burdfield-Steel, Emily R.; Schneider, Jutta M.; Mappes, Johanna; Dobler, Susanne (Springer, 2020)Insects live in a dangerous world and may fall prey to a wide variety of predators, encompassing multiple taxa. As a result, selection may favour defences that are effective against multiple predator types, or target-specific ... -
Defense against predators incurs high reproductive costs for the aposematic moth Arctia plantaginis
Lindstedt, Carita; Suisto, Kaisa; Burdfield-Steel, Emily; Winters, Anne E.; Mappes, Johanna (Oxford University Press, 2020)To understand how variation in warning displays evolves and is maintained, we need to understand not only how perceivers of these traits select color and toxicity but also the sources of the genetic and phenotypic variation ... -
Multimodal Aposematic Defenses Through the Predation Sequence
Winters, Anne E.; Lommi, Jenna; Kirvesoja, Jimi; Nokelainen, Ossi; Mappes, Johanna (Frontiers Media SA, 2021)Aposematic organisms warn predators of their unprofitability using a combination of defenses, including visual warning signals, startling sounds, noxious odors, or aversive tastes. Using multiple lines of defense can help ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.