dc.contributor.author | Kärkkäinen, Tommi | |
dc.date.accessioned | 2019-12-13T13:27:43Z | |
dc.date.available | 2019-12-13T13:27:43Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Kärkkäinen, T. (2019). Model selection for Extreme Minimal Learning Machine using sampling. In <i>ESANN 2019 : Proceedings of the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning</i> (pp. 391-396). ESANN. <a href="https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-18.pdf" target="_blank">https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-18.pdf</a> | |
dc.identifier.other | CONVID_32125881 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/66803 | |
dc.description.abstract | A combination of Extreme Learning Machine (ELM) and Minimal Learning Machine (MLM)—to use a distance-based basis from MLM in the ridge regression like learning framework of ELM—was proposed in [8]. In the further experiments with the technique [9], it was concluded that in multilabel classification one can obtain a good validation
error level without overlearning simply by using the whole training data for constructing the basis. Here, we consider possibilities to reduce the complexity of the resulting machine learning model, referred as the Extreme Minimal Leaning Machine (EMLM), by using a bidirectional sampling strategy: To sample both the feature space and the space of observations in order to identify a simpler EMLM without sacrificing its generalization performance. | en |
dc.format.extent | 696 | |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | ESANN | |
dc.relation.ispartof | ESANN 2019 : Proceedings of the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.relation.uri | https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-18.pdf | |
dc.rights | In Copyright | |
dc.title | Model selection for Extreme Minimal Learning Machine using sampling | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-201912135280 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-2-87587-065-0 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 391-396 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author, 2019 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.relation.grantnumber | 311877 | |
dc.relation.grantnumber | 315550 | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research profiles, AoF | en |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundingprogram | Profilointi, SA | fi |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundinginformation | The work was supported by the Academy of Finland from the projects 311877 (Demo) and 315550 (HNP-AI). | |
dc.type.okm | A4 | |