Näytä suppeat kuvailutiedot

dc.contributor.authorKärkkäinen, Tommi
dc.date.accessioned2019-12-13T13:27:43Z
dc.date.available2019-12-13T13:27:43Z
dc.date.issued2019
dc.identifier.citationKärkkäinen, T. (2019). Model selection for Extreme Minimal Learning Machine using sampling. In <i>ESANN 2019 : Proceedings of the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning</i> (pp. 391-396). ESANN. <a href="https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-18.pdf" target="_blank">https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-18.pdf</a>
dc.identifier.otherCONVID_32125881
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66803
dc.description.abstractA combination of Extreme Learning Machine (ELM) and Minimal Learning Machine (MLM)—to use a distance-based basis from MLM in the ridge regression like learning framework of ELM—was proposed in [8]. In the further experiments with the technique [9], it was concluded that in multilabel classification one can obtain a good validation error level without overlearning simply by using the whole training data for constructing the basis. Here, we consider possibilities to reduce the complexity of the resulting machine learning model, referred as the Extreme Minimal Leaning Machine (EMLM), by using a bidirectional sampling strategy: To sample both the feature space and the space of observations in order to identify a simpler EMLM without sacrificing its generalization performance.en
dc.format.extent696
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherESANN
dc.relation.ispartofESANN 2019 : Proceedings of the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
dc.relation.urihttps://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-18.pdf
dc.rightsIn Copyright
dc.titleModel selection for Extreme Minimal Learning Machine using sampling
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201912135280
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-2-87587-065-0
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange391-396
dc.type.versionpublishedVersion
dc.rights.copyright© The Author, 2019
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceEuropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
dc.relation.grantnumber311877
dc.relation.grantnumber315550
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramProfilointi, SAfi
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundinginformationThe work was supported by the Academy of Finland from the projects 311877 (Demo) and 315550 (HNP-AI).
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright