dc.contributor.author | Dias, Madson L. D. | |
dc.contributor.author | Sousa, Lucas S. | |
dc.contributor.author | Rocha Neto, Ajalmar R. da | |
dc.contributor.author | Mattos, César L. C. | |
dc.contributor.author | Gomes, João P. P. | |
dc.contributor.author | Kärkkäinen, Tommi | |
dc.date.accessioned | 2019-11-12T13:39:29Z | |
dc.date.available | 2019-11-12T13:39:29Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Dias, M. L. D., Sousa, L. S., Rocha Neto, A. R. D., Mattos, C. L. C., Gomes, J. P.P., & Kärkkäinen, T. (2019). Sparse minimal learning machine using a diversity measure minimization. In <i>ESANN 2019 : Proceedings of the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning</i> (pp. 269-274). ESANN. <a href="https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-178.pdf" target="_blank">https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-178.pdf</a> | |
dc.identifier.other | CONVID_32125250 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/66333 | |
dc.description.abstract | The minimal learning machine (MLM) training procedure consists in solving a linear system with multiple measurement vectors (MMV) created between the geometric congurations of points in the input and output
spaces. Such geometric congurations are built upon two matrices created using subsets of input and output points, named reference points (RPs). The present paper considers an extension of the focal underdetermined
system solver (FOCUSS) for MMV linear systems problems with additive noise, named regularized MMV FOCUSS (regularized M-FOCUSS), and evaluates it in the task of selecting input reference points for regression
settings. Experiments were carried out using UCI datasets, where the proposal was able to produce sparser models and achieve competitive performance when compared to the regular strategy of selecting MLM input RPs. | en |
dc.format.extent | 696 | |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | ESANN | |
dc.relation.ispartof | ESANN 2019 : Proceedings of the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.relation.uri | https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-178.pdf | |
dc.rights | In Copyright | |
dc.title | Sparse minimal learning machine using a diversity measure minimization | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-201911124844 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-2-87587-065-0 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 269-274 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Authors, 2019 | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.relation.grantnumber | 311877 | |
dc.relation.grantnumber | 315550 | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Academy of Finland | en |
dc.relation.funder | Academy of Finland | en |
jyx.fundingprogram | Profilointi, SA | fi |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundingprogram | Research profiles, AoF | en |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundinginformation | The authors would like to thank UFC, FUNCAP, and Academy of Finland (grants 311877
and 315550) for supporting their research. | |