Value of information in multiple criteria decision making : an application to forest conservation
Lataukset:
Eyvindson, K., Hakanen, J., Mönkkönen, M., Juutinen, A., & Karvanen, J. (2019). Value of information in multiple criteria decision making : an application to forest conservation. Stochastic Environmental Research and Risk Assessment, 33(11-12), 2007-2018. https://doi.org/10.1007/s00477-019-01745-4
Julkaistu sarjassa
Stochastic Environmental Research and Risk AssessmentPäivämäärä
2019Oppiaine
Ekologia ja evoluutiobiologiaTietotekniikkaTilastotiedeResurssiviisausyhteisöEcology and Evolutionary BiologyMathematical Information TechnologyStatisticsSchool of Resource WisdomTekijänoikeudet
© The Author(s) 2019.
Developing environmental conservation plans involves assessing trade-offs between the benefits and costs of conservation. The benefits of conservation can be established with ecological inventories or estimated based on previously collected information. Conducting ecological inventories can be costly, and the additional information may not justify these costs. To clarify the value of these inventories, we investigate the multiple criteria value of information associated with the acquisition of improved ecological data. This information can be useful when informing the decision maker to acquire better information. We extend the concept of the value of information to a multiple criteria perspective. We consider value of information for both monetary and biodiversity criteria and do not assume any fixed budget limits. Two illustrative cases are used describe this method of evaluating the multiple criteria value of information. In the first case, we numerically evaluate the multiple criteria value of information for a single forest stand. In the second case, we present a forest planning case with four stands that describes the complex interactions between the decision maker’s preference information and the potential inventory options available. These example cases highlight the importance of examining the trade-offs when making conservation decisions. We provide a definition for the multiple criteria value of information and demonstrate the potential application when conservation issues conflict with monetary issues.
...
Julkaisija
Springer Berlin HeidelbergISSN Hae Julkaisufoorumista
1436-3240Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/33429179
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Profilointi, SA; Akatemiahanke, SALisätietoja rahoituksesta
Open access funding provided by University of Jyväskylä (JYU). The authors thank Jo Eidsvik for useful comments. This research was supported by the Academy of Finland (Grant Nos. 311877 and 275329) and is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization) of the University of Jyväskylä.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Planning cost-effective operational forest inventories
Karppinen, Santeri; Ene, Liviu; Engberg Sundström, Lovisa; Karvanen, Juha (Oxford University Press, 2024)We address a Bayesian two-stage decision problem in operational forestry where the inner stage considers scheduling the harvesting to fulfill demand targets and the outer stage considers selecting the accuracy of pre-harvest ... -
Efficient Approximation of Expected Hypervolume Improvement Using Gauss-Hermite Quadrature
Rahat, Alma; Chugh, Tinkle; Fieldsend, Jonathan; Allmendinger, Richard; Miettinen, Kaisa (Springer International Publishing, 2022)Many methods for performing multi-objective optimisation of computationally expensive problems have been proposed recently. Typically, a probabilistic surrogate for each objective is constructed from an initial dataset. ... -
Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies
Chugh, Tinkle; Allmendinger, Richard; Ojalehto, Vesa; Miettinen, Kaisa (Association for Computing Machinery (ACM), 2018)We consider multiobjective optimization problems where objective functions have different (or heterogeneous) evaluation times or latencies. This is of great relevance for (computationally) expensive multiobjective optimization ... -
A Bayesian stable isotope mixing model for coping with multiple isotopes, multiple trophic steps and small sample sizes
Heikkinen, Risto; Hämäläinen, Heikki; Kiljunen, Mikko; Kärkkäinen, Salme; Schilder, Jos; Jones, Roger I. (Wiley-Blackwell, 2022)We introduce a Bayesian stable isotope mixing model for estimating the relative contributions of different dietary components to the tissues of consumers within food webs. The model is implemented with the probabilistic ... -
A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization
Chugh, Tinkle; Jin, Yaochu; Miettinen, Kaisa; Hakanen, Jussi; Sindhya, Karthik (Institute of Electrical and Electronics Engineers, 2018)We propose a surrogate-assisted reference vector guided evolutionary algorithm (EA) for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.