A Bayesian stable isotope mixing model for coping with multiple isotopes, multiple trophic steps and small sample sizes
Heikkinen, R., Hämäläinen, H., Kiljunen, M., Kärkkäinen, S., Schilder, J., & Jones, R. I. (2022). A Bayesian stable isotope mixing model for coping with multiple isotopes, multiple trophic steps and small sample sizes. Methods in Ecology and Evolution, 13(11), 2586-2602. https://doi.org/10.1111/2041-210x.13989
Julkaistu sarjassa
Methods in Ecology and EvolutionTekijät
Päivämäärä
2022Oppiaine
TilastotiedeLaskennallinen tiedeResurssiviisausyhteisöAkvaattiset tieteetMultiobjective Optimization GroupStatisticsComputational ScienceSchool of Resource WisdomAquatic SciencesMultiobjective Optimization GroupTekijänoikeudet
© 2022 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society
We introduce a Bayesian stable isotope mixing model for estimating the relative contributions of different dietary components to the tissues of consumers within food webs. The model is implemented with the probabilistic programming language Stan.
The model incorporates isotopes of multiple elements (e.g. C, N, H) for two trophic levels, when the structure of the food web is known. In addition, the model allows inclusion of latent trophic levels (i.e. for which no empirical data are available) intermediate between sources and measured consumers. Running the model in simulations driven by a real dataset from Finnish lakes, we tested the sensitivity of the posterior distributions by altering critical prior parameters and assumptions in the data-generating process.
Importantly, we found that the model estimations were particularly sensitive to the assigned prior value for ω (the fraction of H in aquatic consumer tissue that is derived from environmental water rather than diet) so that reliable empirical data for this parameter are required. When reliable information is not available for ω, we suggest that an uninformative prior should be used.
The proposed model and inferences are suitable for studies where resources for collecting new data are limited, but useful prior information for each specific trophic level is available from earlier studies.
...
Julkaisija
Wiley-BlackwellISSN Hae Julkaisufoorumista
2041-210XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/159108838
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; KV-yhteishanke, SALisätietoja rahoituksesta
Suomen Akatemia, Grant/Award Number: 285619 and 351860Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Species-specific trophic discrimination factors can reduce the uncertainty of stable isotope analyses
Veselý, Lukáš; Balzani, Paride; Haubrock, Phillip, J.; Buřič, Miloš; Glon, Mael; Ercoli, Fabio; Ruokonen, Timo, J.; Kainz, Martin, J.; Hämäläinen, Heikki; Kouba, Antonín (Springer Nature, 2024)Stable isotope analysis has been broadly used to study food webs, but often relies on inaccurate assumptions of trophic isotopic discriminations, which could lead to misinterpretation of obtained results. While many taxa ... -
Value of information in multiple criteria decision making : an application to forest conservation
Eyvindson, Kyle; Hakanen, Jussi; Mönkkönen, Mikko; Juutinen, Artti; Karvanen, Juha (Springer Berlin Heidelberg, 2019)Developing environmental conservation plans involves assessing trade-offs between the benefits and costs of conservation. The benefits of conservation can be established with ecological inventories or estimated based on ... -
A New Method to Reconstruct Quantitative Food Webs and Nutrient Flows from Isotope Tracer Addition Experiments
López-Sepulcre, Andres; Bruneaux, Matthieu; Collins, Sarah M.; El-Sabaawi, Rana; Flecker, Alexander S.; Thomas, Steven A. (University of Chicago Press, 2020)Understanding how nutrients flow through food webs is central in ecosystem ecology. Tracer addition experiments are powerful tools to reconstruct nutrient flows by adding an isotopically enriched element into an ecosystem ... -
Efficient spatial designs using Hausdorff distances and Bayesian optimization
Paglia, Jacopo; Eidsvik, Jo; Karvanen, Juha (Wiley-Blackwell, 2022)An iterative Bayesian optimisation technique is presented to find spatial designs of data that carry much information. We use the decision theoretic notion of value of information as the design criterion. Gaussian process ... -
Planning cost-effective operational forest inventories
Karppinen, Santeri; Ene, Liviu; Engberg Sundström, Lovisa; Karvanen, Juha (Oxford University Press, 2024)We address a Bayesian two-stage decision problem in operational forestry where the inner stage considers scheduling the harvesting to fulfill demand targets and the outer stage considers selecting the accuracy of pre-harvest ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.