Efficient Approximation of Expected Hypervolume Improvement Using Gauss-Hermite Quadrature
Rahat, A., Chugh, T., Fieldsend, J., Allmendinger, R., & Miettinen, K. (2022). Efficient Approximation of Expected Hypervolume Improvement Using Gauss-Hermite Quadrature. In G. Rudolph, A. V. Kononova, H. Aguirre, P. Kerschke, G. Ochoa, & T. Tušar (Eds.), Parallel Problem Solving from Nature – PPSN XVII : 17th International Conference, PPSN 2022, Dortmund, Germany, September 10–14, 2022, Proceedings, Part II (pp. 90-103). Springer International Publishing. Lecture Notes in Computer Science, 13398. https://doi.org/10.1007/978-3-031-14714-2_7
Julkaistu sarjassa
Lecture Notes in Computer ScienceTekijät
Toimittajat
Päivämäärä
2022Oppiaine
Multiobjective Optimization GroupLaskennallinen tiedePäätöksen teko monitavoitteisestiMultiobjective Optimization GroupComputational ScienceDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
Many methods for performing multi-objective optimisation of computationally expensive problems have been proposed recently. Typically, a probabilistic surrogate for each objective is constructed from an initial dataset. The surrogates can then be used to produce predictive densities in the objective space for any solution. Using the predictive densities, we can compute the expected hypervolume improvement (EHVI) due to a solution. Maximising the EHVI, we can locate the most promising solution that may be expensively evaluated next. There are closed-form expressions for computing the EHVI, integrating over the multivariate predictive densities. However, they require partitioning of the objective space, which can be prohibitively expensive for more than three objectives. Furthermore, there are no closed-form expressions for a problem where the predictive densities are dependent, capturing the correlations between objectives. Monte Carlo approximation is used instead in such cases, which is not cheap. Hence, the need to develop new accurate but cheaper approximation methods remains. Here we investigate an alternative approach toward approximating the EHVI using Gauss-Hermite quadrature. We show that it can be an accurate alternative to Monte Carlo for both independent and correlated predictive densities with statistically significant rank correlations for a range of popular test problems.
...
Julkaisija
Springer International PublishingEmojulkaisun ISBN
978-3-031-14714-2Konferenssi
International Conference on Parallel Problem Solving From NatureKuuluu julkaisuun
Parallel Problem Solving from Nature – PPSN XVII : 17th International Conference, PPSN 2022, Dortmund, Germany, September 10–14, 2022, Proceedings, Part IIISSN Hae Julkaisufoorumista
0302-9743Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/151651579
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work is a part of the thematic research area Decision Analytics Utilizing Causal Models and Multiobjective Optimization (DEMO, jyu.fi/demo) at the University of Jyvaskyla. Dr. Rahat was supported by the Engineering and Physical Research Council [grant number EP/W01226X/1].Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Flexible data driven inventory management with interactive multiobjective lot size optimization
Heikkinen, Risto; Sipilä, Juha; Ojalehto, Vesa; Miettinen, Kaisa (Inderscience Publishers, 2023)We study data-driven decision support and formalise a path from data to decision making. We focus on lot sizing in inventory management with stochastic demand and propose an interactive multi-objective optimisation approach. ... -
Efficient spatial designs using Hausdorff distances and Bayesian optimization
Paglia, Jacopo; Eidsvik, Jo; Karvanen, Juha (Wiley-Blackwell, 2022)An iterative Bayesian optimisation technique is presented to find spatial designs of data that carry much information. We use the decision theoretic notion of value of information as the design criterion. Gaussian process ... -
Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies
Chugh, Tinkle; Allmendinger, Richard; Ojalehto, Vesa; Miettinen, Kaisa (Association for Computing Machinery (ACM), 2018)We consider multiobjective optimization problems where objective functions have different (or heterogeneous) evaluation times or latencies. This is of great relevance for (computationally) expensive multiobjective optimization ... -
Value of information in multiple criteria decision making : an application to forest conservation
Eyvindson, Kyle; Hakanen, Jussi; Mönkkönen, Mikko; Juutinen, Artti; Karvanen, Juha (Springer Berlin Heidelberg, 2019)Developing environmental conservation plans involves assessing trade-offs between the benefits and costs of conservation. The benefits of conservation can be established with ecological inventories or estimated based on ... -
Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
Vihola, Matti; Helske, Jouni; Franks, Jordan (Wiley-Blackwell, 2020)We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.