Näytä suppeat kuvailutiedot

dc.contributor.authorLiu, Jia
dc.contributor.authorZhang, Chi
dc.contributor.authorZhu, Yongjie
dc.contributor.authorRistaniemi, Tapani
dc.contributor.authorParviainen, Tiina
dc.contributor.authorCong, Fengyu
dc.date.accessioned2019-10-17T08:30:47Z
dc.date.available2019-10-17T08:30:47Z
dc.date.issued2020
dc.identifier.citationLiu, J., Zhang, C., Zhu, Y., Ristaniemi, T., Parviainen, T., & Cong, F. (2020). Automated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition. <i>Computer Methods and Programs in Biomedicine</i>, <i>184</i>, Article 105120. <a href="https://doi.org/10.1016/j.cmpb.2019.105120" target="_blank">https://doi.org/10.1016/j.cmpb.2019.105120</a>
dc.identifier.otherCONVID_33169000
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65924
dc.description.abstractBackground and objective. It is challenging to conduct real-time identification of myocardial infarction (MI) due to artifact corruption and high dimensionality of multi-lead electrocardiogram (ECG). In the present study, we proposed an automated single-beat MI detection and localization system using dual-Q tunable Q-factor wavelet transformation (Dual-Q TQWT) denoising algorithm. Methods. After denoising and segmentation of ECG, a fourth-order wavelet tensor (leads × subbands × samples × beats) was constructed based on thediscretewavelet packet transform (DWPT), to represent the features considering the information of inter-beat, intra-beat, inter-frequency, and inter-lead. To reduce the tensor dimension and preserve the intrinsic information, the multilinear principal component analysis (MPCA) was employed. Afterward, 84 discriminate features were fed into a classifier of bootstrap-aggregated decision trees (Treebagger). A total of 78 healthy and 328 MI (6types) records including 57557 beats were chosen from PTB diagnostic ECG database for evaluation. Results.The validation results demonstratedthat our proposed MI detection and localization system embedded with Dual-Q TQWT and wavelet packet tensor decomposition outperformedcommonly used discrete wavelet transform (DWT), empirical mode decomposition (EMD) denoising methods and vector-based PCA method. With the Treebagger classifier, we obtained an accuracy of 99.98% in beat level and an accuracy of 97.46% in record level training/testing for MI detection. We also achieved an accuracy of 99.87% in beat level and an accuracy of 90.39% in record level for MI localization. Conclusion. Altogether, the automated system brings potential improvement in automated detectionand localization of MI in clinical practice.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofseriesComputer Methods and Programs in Biomedicine
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherelectrocardiogram (ECG)
dc.subject.othermyocardial infarction (MI)
dc.subject.otherdual-Q tunable Q-factor wavelet transformation (Dual-Q TQWT)
dc.subject.otherdiscrete wavelet packet transform (DWPT)
dc.subject.othermultilinear principal component analysis (MPCA)
dc.titleAutomated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201910174496
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosDepartment of Psychologyen
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMonitieteinen aivotutkimuskeskusfi
dc.contributor.oppiaineHyvinvoinnin tutkimuksen yhteisöfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineCentre for Interdisciplinary Brain Researchen
dc.contributor.oppiaineSchool of Wellbeingen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0169-2607
dc.relation.volume184
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysosignaalianalyysi
dc.subject.ysosydäninfarkti
dc.subject.ysoEKG
dc.subject.ysosignaalinkäsittely
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26805
jyx.subject.urihttp://www.yso.fi/onto/yso/p8730
jyx.subject.urihttp://www.yso.fi/onto/yso/p20204
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.cmpb.2019.105120
jyx.fundinginformationThis work was supported by Fundamental Research Funds for the Central Universities in Dalian University of Technology in China (DUT2019, DUT16RC(3)021), the scholarships from China Scholarship Council (No.201600090044, No.201600090042), and the National Science Foundation of China (No.91748105, No.81471742, No.61703069).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0