University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Anomaly detection using one-class SVM with wavelet packet decomposition

Thumbnail
View/Open
1.1 Mb

Downloads:  
Show download detailsHide download details  
Authors
Hautakangas, Hannu |
Nieminen, Jukka
Date
2011
Discipline
TietotekniikkaMathematical Information Technology

 
Anomaly detection has become a popular research topic in the field of machine learning. Support vector machine is one anomaly detection technique and it is coming one the most widely used. In this research, anomaly detection is applied to road condition monitoring, especially pothole detection, using accelerometer data. The proposed concept includes data preprocessing, feature extraction, feature selection and classification. Accelerometer data was first filtered and segmented, after which features were extracted with frequency- and time-domain functions, with genetic programming and with wavelet packet decomposition. A classification model was built using support vector machine and the calculated features. The results with actual accelerometer data demonstrates that potholes can be detected reliably. Features from wavelet packet decomposition yielded the best classification results.
 
Poikkeavuuksien havaitsemisesta on tullut suosittu tutkimusalue koneoppimisen alalla. Tukivektorikone on yksi poikkeavuuksien havaitsemismenetelmä ja siitä on tulossa yksi alan käytetyimmistä tekniikoista. Tässä tutkielmassa poikkeavuuksien havaitsemista sovelletaan tien pinnan kuoppien tunnistamiseen kiihtyvyysanturin mittausarvoista. Kiihtyvyysanturin mittausarvoja esikäsiteltiin suodattimen ja ikkunoinnin avulla, minkä jälkeen arvoista laskettiin piirteitä aika- ja taajuustason funktioiden, geneettisen ohjelmoinnin ja aallokemuunnoksen avulla. Parhaiden piirteiden valinnan jälkeen luotiin ennustava malli tukivektorikoneella. Luokittelutulokset osoittavat, että kuopat voidaan havaita luotettavasti kiihtyvyysanturin mittausarvoista. Parhaat tulokset saavutetiin allokemuunnoksella lasketuilla piirteillä.
 
Keywords
accelerometer anomaly detection feature selection one-class support vector machine wavelet packet decomposition koneoppiminen tietotekniikka poikkeavuus
URI

http://urn.fi/URN:NBN:fi:jyu-201202291321

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [25550]

Related items

Showing items with similar title or keywords.

  • A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders 

    Penttilä, Jeremias (2017)
    Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan ...
  • Piecewise anomaly detection using minimal learning machine for hyperspectral images 

    Raita-Hakola, A.-M.; Pölönen, I. (Copernicus Publications, 2021)
    Hyperspectral imaging, with its applications, offers promising tools for remote sensing and Earth observation. Recent development has increased the quality of the sensors. At the same time, the prices of the sensors are ...
  • Talent identification in soccer using a one-class support vector machine 

    Jauhiainen, S.; Äyrämö, S.; Forsman, H.; Kauppi, J-P. (Sciendo, 2019)
    Identifying potential future elite athletes is important in many sporting events. The successful identification of potential future elite athletes at an early age would help to provide high-quality coaching and training ...
  • Unsupervised network intrusion detection systems for zero-day fast-spreading network attacks and botnets 

    Vahdani Amoli, Payam (University of Jyväskylä, 2015)
    Today, the occurrence of zero-day and complex attacks in high-speed networks is increasingly common due to the high number vulnerabilities in the cyber world. As a result, intrusions become more sophisticated and fast ...
  • Minimal learning machine in anomaly detection from hyperspectral images 

    Pölönen, Ilkka; Riihiaho, Kimmo; Hakola, Anna-Maria; Annala, Leevi (International Society for Photogrammetry and Remote Sensing, 2020)
    Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre