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Highlights 

• The myocardial infarction (MI) detection and localization system in single-beat was 

developed based on non-invasive ECG.  

• A novel ECG denoising method dual-Q tunable Q-factor wavelet transformation (Dual-Q 

TQWT) was introduced.  

• We realized the processes of feature extraction and dimensionality reduction with discrete 

wavelet packet transformation (DWPT) and multilinear principal component analysis (MPCA).  

• A total of 78 healthy and 328 MI (6 types: AMI, ALMI, IMI, ASMI, ILMI, IPLMI) records were 

chosen from PTB diagnostic ECG database for evaluation.  

• With the Treebagger classifier, we obtained good results considering both beat-level and 

record-level for MI detection and MI localization.  
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Abstract  

Background and objective. It is challenging to conduct real-time identification of 

myocardial infarction (MI) due to artifact corruption and high dimensionality of multi-lead 

electrocardiogram (ECG). In the present study, we proposed an automated single-beat MI 

detection and localization system using dual-Q tunable Q-factor wavelet transformation 

(Dual-Q TQWT) denoising algorithm. Methods. After denoising and segmentation of ECG, a 

fourth-order wavelet tensor (leads × subbands × samples × beats) was constructed based on 

the discrete wavelet packet transform (DWPT), to represent the features considering the 

information of inter-beat, intra-beat, inter-frequency, and inter-lead. To reduce the tensor 

dimension and preserve the intrinsic information, the multilinear principal component 

analysis (MPCA) was employed. Afterward, 84 discriminate features were fed into a 

classifier of bootstrap-aggregated decision trees (Treebagger). A total of 78 healthy and 328 

MI (6 types) records including 57557 beats were chosen from PTB diagnostic ECG database 

for evaluation. Results. The validation results demonstrated that our proposed MI detection 

and localization system embedded with Dual-Q TQWT and wavelet packet tensor 

decomposition outperformed commonly used discrete wavelet transform (DWT), empirical 

mode decomposition (EMD) denoising methods and vector-based PCA method. With the 

Treebagger classifier, we obtained an accuracy of 99.98% in beat level and an accuracy of 

97.46% in record level training/testing for MI detection. We also achieved an accuracy of 

99.87% in beat level and an accuracy of 90.39% in record level for MI localization. 

Conclusion. Altogether, the automated system brings potential improvement in automated 

detection and localization of MI in clinical practice.  

 

Keywords:  Electrocardiogram (ECG); myocardial infarction (MI); dual-Q tunable Q-factor 

wavelet transformation (Dual-Q TQWT); discrete wavelet packet transform (DWPT); 

multilinear principal component analysis (MPCA).  

 

 

                  



1. Introduction  

Myocardial infarction (MI) is defined as myocardial cell death due to prolonged 

ischemia [1]. As one of the main causes of death and disability, MI is an intractable disease 

and can result in artery disease. In clinical practice, many techniques, including 

electrocardiographic (ECG), biochemical markers, imaging and so on, are used to assist in the 

diagnosis of MI. Among these techniques, the non-invasive ECG, an economic tool, is widely 

used in MI detection [2,3]. The ECG abnormalities of MI can be observed in the PR segment, 

the QRS complex, the ST segment or the T wave [1]. However, the diagnosis of MI usually 

requires multiple ECGs because the ECG signals are time-varying in nature with small 

amplitude. Manual inspection in clinical practice is not only time-consuming and strenuous 

but also leads to inter- and intra-evaluator variability [4,5]. Therefore, a computer-aided 

diagnosis system (CADS) of MI should be developed to realize time-saving and reliable 

analysis [6–11].  

Good quality ECG is a guarantee of reliable CADS, while the ECG signals are often 

corrupted by noise [12]. The ECG signals are usually mixed with different kinds of artifacts, 

such as power line interference, muscle artifacts, and baseline drifts. Therefore, it is 

necessary to remove artifacts by implanting denoising method in CADS. In [13], Fatin and 

colleagues removed the low frequency 0-0.351 Hz and high frequency >45Hz from ECG with 

6-level db6 discrete wavelet transform (DWT) decomposition in arrhythmia recognition. 

However, the DWT fails to separate the noise from ECG when two types of signals co-occur 

at the same frequency band. According to the nature of waveforms in ECG, the 

morphological-based algorithm should be considered in ECG denoising. Blanco-Velasco et al. 

[14] applied the empirical mode decomposition (EMD), in which partial intrinsic mode 

functions (IMFs) were reconstructed to remove noise mixed with ECG from the MIT-BIH 

database. Although EMD has been widely used in ECG denoising, it still leads to the mode-

                  



mixing problem [15]. Therefore, it is challenging to find an effective denoising method to 

obtain high signal-noise-ratio (SNR) ECG signal. Dual-Q tunable Q-factor wavelet 

transformation (Dual-Q TQWT), a morphological-based algorithm, was first introduced in 

[16–18]. Although Dual-Q TQWT is applied to speech analysis[16], limited attention has 

been focused on ECG denoising until now. Using the resonance-based morphological 

separation, the Dual-Q TQWT might provide new sight for ECG denoising. In our study, we 

applied the Dual-Q TQWT as a denoising method in MI detection and localization system. 

Feature extraction plays an important role in CADS. Recent studies have developed 

effective feature extraction methods in automated MI detection and localization system, as 

shown in Table V. In [10], a multiscale energy and eigenspace approach was proposed based 

on DWT. The approach obtained an accuracy of 99.58% in MI localization with 72 features 

from frame-based (4 beats) ECG. Sun et al. [7] presented a multiple instance learning for MI 

detection system based on time-domain features of ST segments and R-R intervals from ECG. 

Their method obtained a sensitivity of 92.6% in single-beat MI detection with 74 features. 

Similarly, 36 time-domain features of Q wave, T wave, and ST level elevation were extracted 

in [3]. They achieved an accuracy of 98.3% in single-beat MI detection. In addition to linear 

time-domain features, Acharya et al. [11] calculated 12 types of nonlinear features covering 

different types of entropy, fractal dimension, and Lyapunov exponent. They obtained an 

accuracy of 98.8% in MI detection with 47 features based on single-beat and single-lead ECG. 

However, it is still challenging to propose efficient and low complexity feature extraction 

approaches to extract discriminate and generalization features. The tensor decomposition, 

different from other state-of-art feature extraction methods, can directly exploit multi-mode 

information contained in the tensor structure. Using tensor decomposition, the information of 

inter-lead, inter-beat, intra-beat, and inter-frequency can be considered as parameters. 

Especially, considering the lead of ECG as a parameter instead of manual selection can avoid 

                  



under-fitting (single-lead) or over-fitting (12-lead). Sibasankar et al. [8] developed a third-

order tensor method (leads × beats × samples) for MI detection and localization, but they 

failed to achieve high performance in single-beat ECG based on DWT. In their study, they 

selected discriminant features from different tensor modes in different wavelet coefficients of 

DWT with visual observation, impeding the precise frequency and automated data-driven 

analysis. In contrast, the discrete wavelet packet transform (DWPT) has these advantages: 

each layer has an equal number of wavelet packet coefficients; the last layer can cover all the 

frequency subbands. These advantages provide the possibility of fourth-order tensor 

formation.    

In our present study, we presented an automated MI detection and localization system 

equipped with Dual-Q TQWT denoising method and fourth-order wavelet packet tensor 

(leads × subbands × samples × beats). The tensor-based MPCA was applied to reduce the 

dimensionality of the wavelet packet tensor. The optimal features were classified by a 

classifier of bootstrap-aggregated decision trees (Treebagger). In our system, the MI 

detection, a two-class classifier, is used to distinguish MI patients from healthy volunteers for 

preliminary screening. The MI localization, a multi-class classifier, is a progressive diagnosis 

for different types of MI patients. The two-step MI classification is precise and resource 

efficient in practice. The PTB diagnostic ECG database was chosen for system evaluation.  

2. Database 

The ECG signals were chosen from the Physikalisch-Technische Bundesanstalt (PTB) 

[19] diagnostic ECG database provided by PhysioBank [20]. A total of 549 records from 290 

subjects (mean age = 57.2 years, 209 men) were collected in the Department of Cardiology of 

University Clinic Benjamin Franklin in Berlin, Germany. Each record contains 12 

conventional leads (I, II, III, AVR, AVL, AVF, V1, V2, V3, V4, V5, V6) and 3 Frank leads 

(VX, VY, VZ) ECG, which were digitized at 1000 Hz with 16 bit resolution over a range of  

                  



± 16.384 mV. According to the clinical statistics, 268 subjects’ data, including eight different 

heart disease groups (216) and one healthy group (52), were provided in the database. Among 

these groups, the myocardial infarction group diagnosed as six different MIs (anterior: AMI, 

anterior-lateral: ALMI, inferior: IMI, anterior-septal: ASMI, inferior-lateral: ILMI, inferior-

posterior-lateral: IPLMI) and the healthy group (H) were chosen for MI detection and 

localization evaluation in the present study. The numbers of records and beats from MI 

patients and healthy volunteers were listed in Table I.  

 

Table I  

NUMBER OF RECORDS AND BEATS FROM DIFFERENT GROUPS 

Type AMI ALMI IMI ASMI ILMI IPLMI H 

Records 46 42 89 76 56 19 78 

Beats 6306 6568 12115 11232 8280 2714 10342 

3. Methods 

The present study presented a novel MI detection and localization system using Dual-Q 

TQWT denoising method and wavelet packet tensor decomposition. The diagram of detection 

and localization system is shown in Fig. 1. For the preprocessing stage, ECG data were 

down-sampled to 250 Hz and filtered with 1000-order 0.5 Hz high-pass and 40 Hz low-pass 

FIR filters implanted in EEGLAB [21]. Furthermore, a mean value was subtracted from each 

lead to eliminate the offset effect [22]. The Dual-Q TQWT, apart from the conventional 

methods, was applied to ECG denoising.  

 

 

 

 

 

 

                  



 

 

3.1. Denoising with Dual-Q TQWT 

The Dual-Q TQWT is a resonance-based, rather than a frequency or scale based signal 

decomposition algorithm, which utilizes sparse signal representations and morphological 

component analysis (MCA) [18]. Using this method, a signal can be decomposed into the 

sum of a high-resonance component and a low-resonance component. Each component is 

represented sparsely by TQWT algorithm with high Q-factor and low Q-factor.  

TQWT is a discrete wavelet transform with flexible Q-factor [17]. Three parameters: Q-

factor (Q), the redundancy (r), and decomposition level (J) should be set during TWQT 

decomposition. The frequency responses and wavelets of different parameters are displayed 

in Fig. 2. The parameter Q is related to oscillation numbers of wavelet, and the parameter r is 

an index of the overlapping between adjacent frequency responses.  All three parameters are 

closely related. TQWT is developed as J level of two-channel filter banks attaching to low-

 
      

Fig. 1.  Schematic diagram of MI detection and localization system 

                  



pass filter output, resulting in J + 1 subbands. The low- pass (  
      ) and high-pass 

(  
      ) filters are defined as:  
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where low-pass scaling    , and high-pass scaling    . The parameters Q and r are 

given by: 
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where BW and fc are the bandwidth and center frequency, respectively.   

 

 
Fig. 2.  Frequency responses and wavelets of TQWT with Q=1, J=4 (top) and Q=4, J=9 (down) 

 

                  



Given a signal x, Dual-Q TQWT decomposes x into x1 and x2 components, where x1 

consists largely of oscillations and x2 consists largely of transients. The x is the sum of x1 and 

x2. Using TQWT, x can be denoted as TQWT1 and TQWT2 with high and low Q-factors. The 

constrained optimization problem can be represented as [16]: 
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(6) 

where      denotes subband j of TQWTi for i = 1,2. The    and    , computed from the norms 

of wavelets based on the mentioned three parameters in TQWT, are the regularization 

parameters for high and low Q-factor TQWT. The MCA [23] based on split augmented 

Lagrangian shrinkage algorithm (SALSA) [24] is applied to estimate the solution of the 

optimization problem. The six parameters, Q1, r1, J1 for high Q-factor TQWT and Q2, r2, J2 

for low Q-factor TQWT, should be preset considering the mathematical theory of TQWT, 

ECG morphology, running time, and goodness-of-fit. To prevent an excessive ringing of 

wavelets, the parameter r should be set as greater than or equal to 3 [9,25]. In our study, the 

parameters r1 and r2 are equal to 3, consistent with literature studies [25,26]. The low factor 

Q2 is usually set to 1 [16], while the high factor Q1 is set to 4 in our work. The parameters J is 

set as half of the maximum of Jmax with J1 = 10, J2 = 25 because low J cannot cover the signal 

and high J leads to high dimension computations [27–29]. 
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(7)  

where N is the number of samples of ECG signal.                                

After filtering and denoising, the ECG signals were segmented into beats based on R-

peak, detected by the Pan-Tompkins algorithm [30]. Each beat has 162 samples including 

                  



250 ms before and 400 ms after R-peak detection. A total of 57557 ECG beats were obtained 

from 6 types of MI groups and 1 healthy group, as shown in Table I. 

3.2. Feature extraction by DWPT 

The discrete wavelet packet transform (DWPT) has been successfully used in ECG 

feature extraction [31]. Compared with the DWT, the DWPT provides more spectral 

information in detail. Let S = [s1, s2, …, sv] be a 12-lead ECG beat of one subject, where   

=12 leads,    =162 samples,           . In the DWPT, both the approximation and detail 

coefficients are decomposed in each level, resulting in 2
J
 subbands at J

th
 level decomposition. 

The sample length of the sub-band at j level is ls, where ls   Ls / 2
j
. In our study, the 

preprocessed ECG beats were subjected to 4 levels of DWPT using db4 mother wavelet to 

extract concise and distinctive features. We chose 16 subbands at the 4
th

 decomposition level 

covering all the frequency bands, each of which contained specific characteristics. The 16 

subbands have the same number of coefficients (16 samples), which provides good feasibility 

for wavelet packet tensor decomposition analysis. The wavelet packet coefficient matrix 

extracted from 12-lead m
th

 beat is converted into wavelet packet tensor                , 

where the modes of I1, I2, I3 are the 12-lead of ECG, the 16 subbands of DWPT at 4
th 

level, 

and the 16 samples of each subband. Hence, a total of B wavelet packet tensors from all 

subjects are represented as   [               ], where m = 1, 2, …, B. 

3.3. Dimensionality reduction by MPCA 

In the view of the high dimensionality of wavelet packet tensor, it is necessary to reduce 

the dimensionality of discriminate features to obtain a good performance of pattern 

recognition and to improve processing speed with less memory capacity. Compared with 

vector-based dimensionality reduction algorithm of principal component analysis (PCA), the 

multilinear principal component analysis (MPCA) can be applied to a tensor object for 

feature extraction and dimensionality reduction [32,33]. Although MPCA is widely used in 

                  



other fields, such as gait recognition [32] and face recognition [34], the application in 

multivariate time series has not been promoted [31,35].  

The MPCA is realized following 4 steps [32]. First, the data are preprocessd by 

centralizing the input samples. Second, data are initialized by calculating the eigen-

decomposition of the eigenvectors corresponding to the most significant eigenvalues. The 

input of MPCA are wavelet packet tensors of B beats,                   . Using a multilinear 

transformation { ̃             
      

                    }, where the  ̃   is the n
th

 

projection matrix, the input tensor                of each beat    can be mapped onto a low 

dimensionality tensor space     
      

      
 
 to extract optimal features. The low dimensionality 

output of MPCA with maximum captured variation is represented as: 

                                       ̃        ̃
        ̃

                                                   

(8) 

where        
      

      
 

, B beats of outputs are   [               ] ,   

   
      

      
    . The realization of dimension reduction can be simplified as an optimal 

problem: 

                            { ̃            }          ̃     ̃     ̃                                      (9) 

where    is the total of B transformed tensor scatters, and     ∑ ‖    ̅‖ 
  

   , where 

the  ̅   ∑   
 
       . Based on the solution of equation (8), the scatter of n-mode 

unfolding matrix is given by: 
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where   
   

 is the n-mode unfolding matrix of the tensor    , and  ̃     can be evaluated as: 

             ̃      ̃        ̃          ̃     ̃     ̃      ̃                    

(11)                                                               

                  



where   is the Kronecker product. The optimization step is solved using the equations (10) 

and (8) in the iteration. Finally, the high-dimensional data are projected into low-

dimensionality tensor space. 

3.4. Classification 

The optimal features extracted from MPCA were fed into a classifier. As a decision 

support tool, the decision tree (DT) utilizes a tree-like model of decisions and possible 

consequences. It is a directed graph, with three sets of decision, chance, and terminal nodes 

(also known as leaves) [36]. A DT, equipped with two functions of denoting payoffs and 

probabilities, can be learned in a recursive partitioning manner based on an attribute value 

test. Although DT has an advantage of simplicity, it is unstable and easily affected by noise. 

The Bootstrap-aggregated, one of the most popular techniques for constructing ensembles to 

improve the robustness, takes base DT learner and invokes it many times with replacement 

samples [37]. As an important parameter of Treebagger, the number of trees can reach several 

hundreds or thousands depending on the nature of the training sets. By taking the majority 

votes or averaging predictions of different DTs, the Treebagger leads to better performance 

than a DT. 

 In our study, the performance of classifiers was measured by sensitivity (SE), 

specificity (SP), and accuracy (ACC) [38].  Based on the confusion matrix obtained from 

predicted class and actual class, the SE, SP, and ACC are evaluated as: 
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(14) 

where TP, TN, FP, and FN correspond to true positive, true negative, false positive, and false 

negative. The ROC (receiver operating characteristics) was also adopted to visualize the 

performance of classifiers [39].  

4. Results and discussion 

Using 78 healthy and 328 MI records chosen from the PTB ECG database, the novel 

detection and localization system of MI with Dual-Q TQWT and wavelet packet tensor 

decomposition proposed in our work were evaluated. First, we evaluated the performance of 

these algorithms in our system. According to the good performance of the algorithms, we 

distinguished the MI patients from healthy volunteers with single-beat ECG. Furthermore, 

each specific MI patient was localized at one of 6 different MI types. Finally, our automated 

MI detection and localization system was compared with earlier published studies.  

4.1. ECG denoising and MPCA evaluation 

Based on high and low Q-factors wavelets and frequency responses, as shown in Fig. 2, 

Dual-Q TQWT decomposes the filtered ECG signal into the sum of a high Q-factor 

component and a low Q-factor component. Fig. 3 displays the decomposition results 

consisting of original and resonance waveforms. From this figure, we found that the high Q-

factor component corresponded to sustained oscillations, consisting of low- and high-

frequency bands unrelated to typical morphology of ECG (e.g. PR segment, QRS waveform, 

et al.). In contrast, the low Q-factor component corresponded to the transients following the 

morphology of the original waveform, with high signal-noise-ratio (SNR). Due to the 

characteristics of morphological segments and high SNR, the low Q-factor component was 

chosen for further processing. The denoised data were segmented into beats and decomposed 

into 4-level DWPT to extract features. Using 16 subbands in the fourth level, a wavelet 

                  



packet tensor (leads × subbands × samples × beats) was formed. In our work, the MPCA was 

applied to wavelet packet tensor for dimensionality reduction. Compared with the vector-

based PCA, the tensor-based MPCA could reserve inherent properties of features.  

 

 

 

 

 

 

 

Fig. 3.  Resonance decomposition with Dual-Q TQWT 

To illustrate the performance of the denoising algorithm, we compared the Dual-Q 

TQWT with commonly used denoising methods discrete wavelet transform (DWT) [13] and 

empirical mode decomposition (EMD) [13]. Based on the data from healthy volunteers and 5 

groups of MI (without IPLMI), the performance of a multi-class classifier of Treebagger in 

the record level was chosen as criteria of these comparisons. The comparison results are 

illustrated in Table II. The results demonstrate that the performance of denoising methods 

outperforms filter processing. Compared with the state-of-art denoising methods (DWT and 

EMD), our proposed Dual-Q TQWT is comparable considering the running time (s/record) 

                  



and performance. The good results validate the utility of Dual-Q TQWT denoising in MI 

detection and localization system. 

Table II  

                           COMPARISONS AMONG DENOISING METHODS 

    Filtered   Dual-Q TQWT DWT EMD 

ACC 83.64% 91.36% 89.89% 91.28% 

SEN 96.73% 98.27% 97.98% 98.26% 

SPE 83.74% 91.36% 89.89% 91.27% 

Time(s) -         45.63 2.98 225.89 

 

 

 

 

 

 

For wavelet packet coefficients, we compared the results of WPT-Tensor and WPT-

Vector (by reshaping wavelet packet tensor to vector). WPT-Vector achieved an accuracy, a 

sensitivity, and a specificity of 88.73%, 97.75%, and 88.75%, respectively. We also 

computed the performance of Dual-Q TQWT time-domain features without DWPT and 

obtained an accuracy, a sensitivity, and a specificity of 81.24%, 91.56%, and 80.95%, 

respectively. Altogether, the combination of Dual-Q TQWT + DWPT + MPCA yielded the 

highest performance compared with Dual-Q TQWT+ DWPT + PCA and Dual-Q TQWT + 

MPCA.  

4.2. Physiological ECG features from DWPT and MPCA 

By applying DWPT, we extracted spatial, spectral, and temporal features from leads, 

frequency bands (subbands), and samples. Fig. 4 displays the physiological ECG waveforms 

in subbands 1-4 (significant variation of features) from 12 leads. We found that the 

                  



waveforms in different subbands and leads were different in 6 types of MI patients and 

healthy volunteers. The abnormalities of MI could be displayed in the PR segment, the QRS 

complex, the ST segment, and the T wave in different subbands.  

 Although DWPT features are significantly different in different types of MI and healthy 

volunteers, as shown in Fig. 4, there is too much redundancy information in the fourth-order 

wavelet packet tensor. The wavelet packet tensor was subjected to MPCA and was reduced to 

low-dimensional tensor using matrices of multilinear projection. Fig. 5 displays three 

 

Fig. 4.  DWPT features extracted from leads, sunbands, and samples 

                  



projection matrices in three modes. According to multilinear projection, we found four 

components in the spatial factor, which illustrated the multilinear combination of 12 leads. 

For the spectral factor, we found three components, especially subbands 1, 2, and 4, which 

were most important in MI identification. Each subband covers about 8 Hz from 0.5-125 Hz. 

Seven waveforms in the temporal factor were the representations of the PR segment, the QRS 

complex, the ST segment, and the T wave. The discriminant features of different types of MI 

patients and healthy volunteers are located in 4 components of spatial factor, 3 components of 

spectral factor, and 7 components of temporal factor.  

 

 

Fig. 5.  MPCA matrices of multilinear projection 

 

 

 

 

 

 

 

                  



4.3. MI detection 

The MI detection was treated as a two-class classification, distinguishing the MI patients 

from healthy volunteers. There were 47215 instances (heart beats) from 328 MI records and 

10342 instances from 78 healthy records. The dimensions (12 leads × 16 subbands ×16 

samples × 57557 beats) of wavelet packet tensor were reduced to low-dimension space of 4 × 

3 × 7 × 57557 beats by MPCA, where 90% energy was kept and the maximum number of 

interaction was set as 1. A total of 84 maximum optimal features were selected for MI 

detection. A Treebagger embedded with 200 trees was applied to classification. Fig. 6 shows 

the ROC curves corresponding to different sets of features (according to the ordering index of 

projected features in decreasing variance) with 90% instances for training and 10% for testing, 

which demonstrates the 84 features are not overfitting or underfitting. 

 

 

 

 

 

 

 

Fig. 6.  ROC for MI detection with different features 

 

 

                  



 

We conducted training processes in both beat level (randomly selected instances from 

records) with 10-fold cross validation and record level (considered instances from a set of MI 

and healthy records to avoid the same instance during training and testing) with handout 

method. For the training in beat level, we achieved an accuracy of 99.98%, a sensitivity of 

100%, and a specificity of 99.90%, respectively. The confusion matrix of MI detection is 

shown in Table III. As shown in the table, all 18852 MI beats could be correctly classified, 

while 8 healthy beats of ECG among 4106 beats were misclassified to MI patients. Using 

only 10 features, we could achieve an accuracy of 99.41% for MI detection. For the training 

in record level, we selected randomly 90% records for training and the left 10% records for 

testing. We achieved an accuracy of 97.46%, a sensitivity of 99.09%, and a specificity of 

90.26%, respectively. Compared with beat level classification results, the record level results 

reveal the inter-record and inter-subject variations.  

 

 

Fig. 7.  Performance of MI localization with different features using 10-fold cross validation 

 

                  



4.4. MI localization 

In this section, the MI localization was seen as multi-class classification, localizing each 

specific group from 6 different types of MI. The 47215 MI instances came from 46 AMI 

(6306), 42 ALMI (6568), 89 IMI (12115), 76 ASMI (11232), 56 ILMI (8280), and 19 IPLMI 

(2714) records. The dimensions (12 leads × 16 subbands ×16 samples × 47215 beats) of 

wavelet packet tensor were reduced to low-dimension 4 × 3 × 7 × 47215 beats by MPCA 

with the same settings in MI detection. The same classifier and beat- and record-level training 

processes were chosen for MI localization. Fig. 7 displays the changes in average accuracy,  

 

 

Table III  

CONFUSION MATRIX OF TREEBAGGER FOR MI DETECTION 

 H MI 

H 4162 8 

MI 0 18852 

sensitivity, and specificity following the number of features with 10-fold cross 

validation, which demonstrates the necessity of 84 features in MI localization. For the beat 

level, the average accuracy, sensitivity, and specificity were 99.87% (± 0.05%), 99.97% (± 

0.01%), and 99.88% (± 0.05%), respectively. The confusion matrix of 6 types of MI is 

presented in Table IV. From the confusion matrix, we found that all the ILMI beats could be 

classified correctly. Other types of MI were easily misclassified into IPLMI, with 5 AMI 

beats, 2 ALMI beats, 3 IMI beats, and 3 ASMI beats. The beats of ASMI were easily mixed 

with other types of MI. By using only 10 features, we could achieve an accuracy of 99.35% 

for MI localization. For the record level, we presented the performance with 90% records for 

training and the left 10% records for testing. We achieved an accuracy of 90.39%, a 

sensitivity of 98.03%, and a specificity of 90.76%, respectively. 

 

                  



 

 

 

 

 

 

 

4.5. Comparison performance 

Table V summarizes the studies employing different techniques in MI detection and 

localization with the same PTB ECG dataset. In our study, we down-sampled the ECG signal 

from 1000 Hz to 250 Hz, resulting in 162 samples in each beat. The samples in each beat are 

fewer than 650 samples in previous research [6,9,31]. Furthermore, a denoising method was 

applied differently from previous conventional filtering preprocessing. In comparison to 

filtered data and commonly used denoising methods, the advent of Dual-Q TQWT makes it 

possible to obtain better performance with fewer samples in each beat. To enhance real-time 

MI diagnosis, our work, as well as some earlier studies [8,10], was focused on single-beat 

rather than frame-based (4 beats) exploration. Furthermore, the number of ECG leads is 

another factor correlated with diagnosis efficiency and computer capacity. Instead of 

 Table IV  

CONFUSION MATRIX OF TREEBAGGER FOR MI LOCALIZATION 

 AMI ALMI IMI ASMI ILMI IPLMI 

AMI 2576 2 0 1 0 5 

ALMI 2 2502 2 2 0 2 

IMI 1 1 4563 3 0 3 

ASMI 2 0 2 4798 0 3 

ILMI 0 0 0 0 1115 0 

IPLMI 0 0 2 1 0 3298 

 

                  



considering all 12 leads, some researchers explored the possibility of using fewer leads or just 

one single lead [6,9,11,40]. However, they only illustrated the single lead or 12 leads, 

ignoring the combination of different leads. Wavelet packet tensor is an efficient tool, which 

can take the ECG leads as one part of features. Using dimensionality reduction, optimal leads 

are selected, avoiding a manual operation of over-fitting or under-fitting. Different from 

third-order tensor used in [8], our work applied a fourth-order tensor consisting of frequency 

(taking advantage of an equal number of wavelet packet coefficients), leads, samples, and 

beats. The fourth-order wavelet packet tensor was dimensionality reduced in the tensor 

structure with MPCA, whose classification performance outperformed the commonly used 

vector-based PCA. Although feature extraction and selection were eliminated in these studies 

with convention neural network (CNN) [6,40–43], big data, long training time, and high 

quality service were other problems introduced in their studies. Previous studies achieved 

good performance without considering inter-subjects variations. Our study presented good 

results in both beat level and record level training/testing. The MI detection and localization 

system for single-beat containing fewer samples in our work is comparable to the earlier 

studies in the literature. We obtained an accuracy of 99.98% in MI detection and an accuracy 

of 99.87% in MI localization in beat level with 84 features. By using only 10 features in beat 

level, we obtained an accuracy of 99.41% in MI detection and an accuracy of 99.35% in MI 

localization. For the record level, we achieved an accuracy of 97.46% in MI detection and an 

accuracy of 90.39% in MI localization. 

4.6. Computational complexity of methods 

The proposed methods are implanted in MATLAB 2018b software in the Windows 

platform on a desk computer with Intel i5-7500 CPU (@ 3.4 GHz) and 8-GB RAM. For one 

record of ECG, the running time of Dual-Q TQWT (45.63 s) is shorter than the commonly 

used denoising algorithm EMD (225.89 s). The running time of DWPT feature extraction is 

                  



11.39s, which is easier and more time-saving than features combination of linear, nonlinear, 

and entropy. Compared with the time spending on PCA (1795.21 s) used for dimensionality 

reduction, the tensor-based MPCA requires 123.84 s on 408 ECG records. The training and 

testing processes of Treebagger classifier spend 223.13s and 0.67s, respectively. 

 

 

 

                  



 

Table V 

COMPARSION OF STUDIES USING PTB ECG DATABASE 

Ref Beat Lead 

 

Database 

 

Over-

fitting 

 

Methods 

 

Features 

 

Results 

  [6]  1 12 MI: 369 RE 

H: 79 RE 

No  Multiple instance learning  

+ KNN, SVM 

74 SE= 92.6%; SP=88.1% 

  [3]  1 12 MI: 16960 

BE 

H: 3200 BE 

Yes Time domain features with DWT 

+ KNN 

36 (D,L) SE= 99.97%; SP=99.9% (D) 

SE= 98.67%; SP=98.71% (L) 

  [9]  4 12 MI: 847 BE 

H: unkown 

Yes DWT multiscale energy 

eigenspace + SVM 

72 (D,L) 

          

ACC= 96%;  SE= 93%; SP=99% (D) 

ACC= 99.58% (L) 

  

[10] 

 1 1 MI: 485753 

BE 

H: 125652 

BE 

Yes 12 nonlinear features  

+ KNN 

 47 (D) 

 25 (L) 

ACC= 98.8%;  SE= 99.45%; SP=96.27% (D) 

ACC= 98.74%; SE= 99.55%; SP=96.16% (L) 

  [5]  1 1 MI: 40182 

BE 

H: 10546 

BE 

Yes Deep convolutional neural 

network 

    _ ACC= 95.22%;  SE=95.49%; SP=94.19%  

  

[37] 

 1 1,12 MI: 485752 

BE 

H: 10564 

BE 

Yes Deep convolutional neural 

network 

    _ ACC= 99.78% 

 

  [7]  4 12 MI: 41726 

BE 

H: 9966 BE 

No DWT + High order singular value 

decomposition (HOSVD) + SVM 

 35 (D) 

 51 (L) 

ACC= 95.3%;  SE= 94.6%; SP=96.0% (D) 

ACC= 98.1% (L) 

Our  

work 

 1 12 MI: 47215 

BE 

H: 10342 

BE 

No Dual-Q TQWT + DWPT + 

MPCA + Treebagger 

Record-

level 

84 (D,L) 

Beat-

level 

84 (D,L) 

10 (D,L)          

ACC= 97.46%;  SE= 99.09%;SP=90.26% (D) 

ACC= 90.39%; SE= 98.03%; SP=90.76% (L) 

 

ACC= 99.98% ;  SE= 100%; SP=99.9% (D) 

ACC= 99.87%; SE= 99.97%; SP=99.88% (L) 

ACC= 99.41% (D); ACC= 99.35% (L) 

                                                                                                                                                                       D is MI detection, L is MI localization. 

 

                  



5. Conclusion 

The power of machine learning and advanced signal processing provides an opportunity 

for intelligent medical assistance in clinical practice. However, automated, reliable, and real-

time MI detection and localization is still a challenging problem because of artifacts 

corruption, high dimensionality, and inter-individual variations. In our present study, we 

introduced an automated MI detection and localization system using Dual-Q TQWT and 

wavelet packet tensor decomposition. By applying the Dual-Q TQWT denoising method, we 

achieved comparable good performance compared with the filtered data and commonly used 

denoising methods. Based on the low Q-factor component after denoising, a wavelet packet 

tensor was formed and then dimensionality reduced by tensor-based MPCA, which showed a 

better result than vector-based PCA. A total of 84 features chosen from MPCA 

dimensionality reduction were fed into a Treebagger classifier, reaching an accuracy of 97.46% 

in MI detection and an accuracy of 90.39% in MI localization considering the record 

variations. The high performance of our automated detection and localization system might 

be helpful in providing MI diagnosis care with minimal resources.  

In future work, we will test the robustness of Dual-Q TQWT with different types of 

artifacts mixed with ECG data. Moreover, the automated MI detection and localization 

system will be applied to other heart disease diagnosis.  
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