DNA Origami-Mediated Substrate Nanopatterning of Inorganic Structures for Sensing Applications
Piskunen, P., Shen, B., Julin, S., Ijäs, H., Toppari, J. J., Kostiainen, M. A., & Linko, V. (2019). DNA Origami-Mediated Substrate Nanopatterning of Inorganic Structures for Sensing Applications. Journal of Visualized Experiments, 2019(151), Article e60313. https://doi.org/10.3791/60313
Published in
Journal of Visualized ExperimentsAuthors
Date
2019Copyright
© Authors, 2019
Structural DNA nanotechnology provides a viable route for building from the bottom-up using DNA as construction material. The most common DNA nanofabrication technique is called DNA origami, and it allows high-throughput synthesis of accurate and highly versatile structures with nanometer-level precision. Here, it is shown how the spatial information of DNA origami can be transferred to metallic nanostructures by combining the bottom-up DNA origami with the conventionally used top-down lithography approaches. This allows fabrication of billions of tiny nanostructures in one step onto selected substrates. The method is demonstrated using bowtie DNA origami to create metallic bowtie-shaped antenna structures on silicon nitride or sapphire substrates. The method relies on the selective growth of a silicon oxide layer on top of the origami deposition substrate, thus resulting in a patterning mask for following lithographic steps. These nanostructure-equipped surfaces can be further used as molecular sensors (e.g., surface-enhanced Raman spectroscopy (SERS)) and in various other optical applications at the visible wavelength range owing to the small feature sizes (sub-10 nm). The technique can be extended to other materials through methodological modifications; therefore, the resulting optically active surfaces may find use in development of metamaterials and metasurfaces.
...
Publisher
MyJove Corp.ISSN Search the Publication Forum
1940-087XKeywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/33067537
Metadata
Show full item recordCollections
Additional information about funding
This work was supported by the Academy of Finland (projects 286845, 308578, 303804, 267497), the Jane and Aatos Erkko Foundation, and the Sigrid Jusélius Foundation. This work was carried out under the Academy of Finland Centers of Excellence Programme (2014–2019).License
Related items
Showing items with similar title or keywords.
-
Nanodevices by DNA based gold nanostructures
Tapio, Kosti (University of Jyväskylä, 2017)In this thesis DNA based structures were utilized to create gold nanostructures for nanosensing and nanoelectronic applications. In the past, both of these fields have been dominated by the conventional lithography methods, ... -
Applications of DNA self-assembled structures in nanoelectronics and plasmonics
Shen, Boxuan (University of Jyväskylä, 2018)In this thesis, the potential applications of DNA self-assembled structures were explored in both nanoelectronics and plasmonics. The works can be divided into two parts: electrical characterization of unmodified multilayered ... -
Metallic Nanostructures Based on DNA Nanoshapes
Shen, Boxuan; Tapio, Kosti; Linko, Veikko; Kostiainen, Mauri A.; Toppari, Jussi (MDPI AG, 2016)Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, ... -
Constructing Large 2D Lattices Out of DNA-Tiles
Parikka, Johannes M.; Sokołowska, Karolina; Markešević, Nemanja; Toppari, J. J. (MDPI, 2021)The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has ... -
Dipolar coupling of nanoparticle-molecule assemblies : an efficient approach for studying strong coupling
Fojt, Jakub; Rossi, Tuomas P.; Antosiewicz, Tomasz J.; Kuisma, Mikael; Erhart, Paul (American Institute of Physics, 2021)Strong light–matter interactions facilitate not only emerging applications in quantum and non-linear optics but also modifications of properties of materials. In particular, the latter possibility has spurred the development ...