Show simple item record

dc.contributor.advisorParkkonen, Jouni
dc.contributor.authorPaavola, Antti
dc.date.accessioned2019-08-09T05:21:16Z
dc.date.available2019-08-09T05:21:16Z
dc.date.issued2019
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65209
dc.description.abstractTutkielmassa etsitään ratkaisuja Pellin yhtälölle eli muotoa x^2-Dy^2=1, jossa luku D ei saa olla minkään luvun neliö. Työssä keskitytään Pellin yhtälön kokonaislukuratkaisujen löytämiseen, sillä reaalilukuratkaisut löydetään helposti. Samoin helposti löydetään jokaisen Pellin yhtälön toteuttavat triviaaliratkaisut. Aluksi tutustutaan kolmiolukuihin ja neliölukuihin. Kolmioneliöluvut liittyvät olennaisesti Pellin yhtälön erikoistapaukseen, jossa D=2. Tutkielman alkupuoliskolla tutkitaan tätä erikoistapausta ja laajennetaan saadut tulokset koskemaan kaikkia Pellin yhtälöitä. Tutkielman alkupuolen merkittävin tulos on se, että löytämällä Pellin yhtälölle yhden ratkaisun, saadaan loput kyseisen yhtälön ratkaisut ensimmäisestä ratkaisusta potenssiin korottamisen avulla. Tutkielman jälkipuoliskolla keskitytään ketjumurtolukuihin, koska Pellin yhtälön pienin ratkaisu löydetään niiden avulla. Tuon ratkaisun löytämistä varten tarvitaan konvergentin ja jaksollisen ketjumurtoluvun käsitteet. Lähes jokainen luku voidaan esittää ketjumurtolukuna ja pienimmän ratkaisun löytämistä varten täytyy luvun D neliöjuuri esittää ketjumurtolukuna, jossa alkaa toistua tietty jakso. Tutkielman lopulla käydään läpi tärkeät kaavat, joiden avulla saadaan laskettua jaksoa ja konvergentteja hyödyntäen Pellinyhtälön pienin ratkaisu. Ratkaisu lasketaan eri kaavoilla riippuen siitä onko luku D parillinen vai pariton. Tämän ratkaisun avulla sitten saadaan laskettua kaikki loput Pellin yhtälön ratkaisut.fi
dc.format.extent46
dc.format.mimetypeapplication/pdf
dc.language.isofi
dc.titlePellin yhtälöistä
dc.identifier.urnURN:NBN:fi:jyu-201908093795
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineMatematiikan opettajankoulutusfi
dc.contributor.oppiaineTeacher education programme in Mathematicsen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysoalgebra
dc.subject.ysoyhtälöt
dc.subject.ysolukuteoria
dc.format.contentfulltext
dc.type.okmG2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record