dc.contributor.advisor | Parkkonen, Jouni | |
dc.contributor.author | Paavola, Antti | |
dc.date.accessioned | 2019-08-09T05:21:16Z | |
dc.date.available | 2019-08-09T05:21:16Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/65209 | |
dc.description.abstract | Tutkielmassa etsitään ratkaisuja Pellin yhtälölle eli muotoa x^2-Dy^2=1, jossa luku D ei saa olla minkään luvun neliö. Työssä keskitytään Pellin yhtälön kokonaislukuratkaisujen löytämiseen, sillä reaalilukuratkaisut löydetään helposti. Samoin helposti löydetään jokaisen Pellin yhtälön toteuttavat triviaaliratkaisut. Aluksi tutustutaan kolmiolukuihin ja neliölukuihin. Kolmioneliöluvut liittyvät olennaisesti Pellin yhtälön erikoistapaukseen, jossa D=2. Tutkielman alkupuoliskolla tutkitaan tätä erikoistapausta ja laajennetaan saadut tulokset koskemaan kaikkia Pellin yhtälöitä. Tutkielman alkupuolen merkittävin tulos on se, että löytämällä Pellin yhtälölle yhden ratkaisun, saadaan loput kyseisen yhtälön ratkaisut ensimmäisestä ratkaisusta potenssiin korottamisen avulla.
Tutkielman jälkipuoliskolla keskitytään ketjumurtolukuihin, koska Pellin yhtälön pienin ratkaisu löydetään niiden avulla. Tuon ratkaisun löytämistä varten tarvitaan konvergentin ja jaksollisen ketjumurtoluvun käsitteet. Lähes jokainen luku voidaan esittää ketjumurtolukuna ja pienimmän ratkaisun löytämistä varten täytyy luvun D neliöjuuri esittää ketjumurtolukuna, jossa alkaa toistua tietty jakso. Tutkielman lopulla käydään läpi tärkeät kaavat, joiden avulla saadaan laskettua jaksoa ja konvergentteja hyödyntäen Pellinyhtälön pienin ratkaisu. Ratkaisu lasketaan eri kaavoilla riippuen siitä onko luku D parillinen vai pariton. Tämän ratkaisun avulla sitten saadaan laskettua kaikki loput Pellin yhtälön ratkaisut. | fi |
dc.format.extent | 46 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | fi | |
dc.title | Pellin yhtälöistä | |
dc.identifier.urn | URN:NBN:fi:jyu-201908093795 | |
dc.type.ontasot | Pro gradu -tutkielma | fi |
dc.type.ontasot | Master’s thesis | en |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.tiedekunta | Faculty of Sciences | en |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.oppiaine | Matematiikan opettajankoulutus | fi |
dc.contributor.oppiaine | Teacher education programme in Mathematics | en |
dc.rights.copyright | Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. | fi |
dc.rights.copyright | This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. | en |
dc.type.publication | masterThesis | |
dc.contributor.oppiainekoodi | 4041 | |
dc.subject.yso | algebra | |
dc.subject.yso | yhtälöt | |
dc.subject.yso | lukuteoria | |
dc.format.content | fulltext | |
dc.type.okm | G2 | |