Kompleksilukujen lukuteoriaa ja lukuteoriaa kompleksiluvuilla
Tekijät
Päivämäärä
2019Tämän tutkielman tarkoituksena on näyttää, kuinka kokonaislukujen lukuteoriaa voidaan yleistää kokonaislukujen kompleksisille laajennuksille. Lisäksi halutaan osoittaa, että tilannetta voidaan tarkastella toisestakin suunnasta eli siitä, kuinka kokonaislukujen lukuteorian tuloksia voidaan todistaa kompleksilukujen avulla. Kokonaislukujen kompleksisista laajennuksista erityisen kiinnostuneita tutkielmassa ollaan Gaussin, Hurwitzin ja Eisensteinin kokonaisluvuista.
Tutkielman alussa esitellään perusteellisesti Gaussin kokonaisluvut, jotka ovat tärkein tutkielmassa käytettävistä kokonaislukujen laajennuksista. Gaussin kokonaisluvuille näytetään ensin niiden algebrallisia ominaisuuksia, minkä jälkeen siirrytään lukuteoreettisiin ominaisuuksiin. Osoittautuu, että monet kokonaislukujen lukuteorian käsitteet ja tulokset, kuten alkuluvut, Eukleideen algoritmi, aritmetiikan peruslause ja Bézout'n lemma, voidaan yleistää Gaussin kokonaisluvuille.
Tämän jälkeen vaihdetaan tarkastelusuuntaa. Tutustutaan kokonaislukujen lukuteorian tuloksiin ja niiden todistamiseen kokonaislukujen kompleksilaajennusten avulla. Ensimmäisenä annetaan tulos luonnollisen luvun esittämisestä kahden neliön summana. Tuloksen todistuksessa hyödynnetään Gaussin kokonaislukuja. Tämän jälkeen esitellään toinen kokonaislukujen kompleksisista laajennuksista, Hurwitzin kokonaisluvut. Niiden avulla todistetaan tulos luonnollisen luvun esittämisestä neljän neliön summana. Kolmantena todistettavana lukuteorian tuloksena esitellään eräs tapaus Fermat'n suuresta lauseesta. Todistusta varten perehdytään Eisensteinin kokonaislukuihin, jotka ovat viimeinen tutkielmassa esiteltävistä kokonaislukujen laajennuksista.
Lopuksi kootaan yhteen tutkielmassa käytetyt kokonaislukujen laajennukset niiden geometrisen tulkinnan kautta. Samalla käsitellään lyhyesti tavallisten kokonaislukujen ja niiden kompleksisten laajennusten ulottuvuuksien määrää ja esitellään eräs siihen liittyvä toistaiseksi ratkaisematon ongelma.
...
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29743]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Fermat'n suuren lauseen erikoistapauksia
Väisänen, Jussi (2018)Tämän tutkielman tarkoituksena on perehtyä Fermat'n suuren lauseen todistuksen syntyyn ja etenkin muutamiin lauseen yksinkertaisimpiin erityistapauksiin. Fermat'n suuren lauseen mukaan ei ole olemassa kokonaislukuja x, y ... -
Alkulukutesteistä
Sormunen, Lauri (2016)Tämän tutkielman tavoitteena on esittää tunnetuimmat alkulukutestit niin matemaattiselta perustoiltaan kuin käytännön toteutuksiltaan ohjelmakoodin muodossa. Alkulukutestit jaotellaan yleisesti deterministisiin ja ... -
Lukuteoriaan perustuvia salausmenetelmiä
Rehn, Rasmus (2019)Tämän tutkielman tarkoitus on tutustuttaa lukija salakirjoituksen maailmaan lukuteorian näkökulmasta. Tutkielma sisältää salausmenetelmiin tarvittavat matemaattiset pohjatiedot, Diffie-Hellmanin salausmenetelmän ja ... -
Fermat'n suuren lauseen historia ja sen matemaattinen kehitys 1700- ja 1800-luvuilla
Luotonen, Mervi (2008) -
Fermat'n pieni lause
Pitkänen, Heikki (2009)Tässä työssä tutkimme Fermat’n pientä lausetta, Eulerin funktiota ja yksiköiden ryhmää. Toteamme myös, että on olemassa lukuja, jotka toteuttavat Fermat’n lauseen kaavan olematta kuitenkaan alkulukuja. Todistamme lisäksi ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.