Kompleksilukujen lukuteoriaa ja lukuteoriaa kompleksiluvuilla
Authors
Date
2019Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Tämän tutkielman tarkoituksena on näyttää, kuinka kokonaislukujen lukuteoriaa voidaan yleistää kokonaislukujen kompleksisille laajennuksille. Lisäksi halutaan osoittaa, että tilannetta voidaan tarkastella toisestakin suunnasta eli siitä, kuinka kokonaislukujen lukuteorian tuloksia voidaan todistaa kompleksilukujen avulla. Kokonaislukujen kompleksisista laajennuksista erityisen kiinnostuneita tutkielmassa ollaan Gaussin, Hurwitzin ja Eisensteinin kokonaisluvuista.
Tutkielman alussa esitellään perusteellisesti Gaussin kokonaisluvut, jotka ovat tärkein tutkielmassa käytettävistä kokonaislukujen laajennuksista. Gaussin kokonaisluvuille näytetään ensin niiden algebrallisia ominaisuuksia, minkä jälkeen siirrytään lukuteoreettisiin ominaisuuksiin. Osoittautuu, että monet kokonaislukujen lukuteorian käsitteet ja tulokset, kuten alkuluvut, Eukleideen algoritmi, aritmetiikan peruslause ja Bézout'n lemma, voidaan yleistää Gaussin kokonaisluvuille.
Tämän jälkeen vaihdetaan tarkastelusuuntaa. Tutustutaan kokonaislukujen lukuteorian tuloksiin ja niiden todistamiseen kokonaislukujen kompleksilaajennusten avulla. Ensimmäisenä annetaan tulos luonnollisen luvun esittämisestä kahden neliön summana. Tuloksen todistuksessa hyödynnetään Gaussin kokonaislukuja. Tämän jälkeen esitellään toinen kokonaislukujen kompleksisista laajennuksista, Hurwitzin kokonaisluvut. Niiden avulla todistetaan tulos luonnollisen luvun esittämisestä neljän neliön summana. Kolmantena todistettavana lukuteorian tuloksena esitellään eräs tapaus Fermat'n suuresta lauseesta. Todistusta varten perehdytään Eisensteinin kokonaislukuihin, jotka ovat viimeinen tutkielmassa esiteltävistä kokonaislukujen laajennuksista.
Lopuksi kootaan yhteen tutkielmassa käytetyt kokonaislukujen laajennukset niiden geometrisen tulkinnan kautta. Samalla käsitellään lyhyesti tavallisten kokonaislukujen ja niiden kompleksisten laajennusten ulottuvuuksien määrää ja esitellään eräs siihen liittyvä toistaiseksi ratkaisematon ongelma.
...


Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [24542]
Related items
Showing items with similar title or keywords.
-
Lukuteoriaan perustuvia salausmenetelmiä
Rehn, Rasmus (2019)Tämän tutkielman tarkoitus on tutustuttaa lukija salakirjoituksen maailmaan lukuteorian näkökulmasta. Tutkielma sisältää salausmenetelmiin tarvittavat matemaattiset pohjatiedot, Diffie-Hellmanin salausmenetelmän ja ... -
Alkulukuja ja melkein alkulukuja
Tuononen, Minna (2011) -
Suhteellisten alkulukuparien todennäköisyys
Kosonen, Kati (2020)Tässä tutkielmassa osoitetaan, että kaksi satunnaisesti valittua kokonaislukua ovat keskenään suhteellisia alkulukuja 61% todennäköisyydellä. Tulosta lähestytään lukuteorian näkökulmasta erilaisten funktioiden ja niiden ... -
Algebrallista lukuteoriaa : Pellin yhtälöstä ja aritmetiikan peruslauseen yleistämisestä
Ojaniemi, Jenna (2019)Tutkielman tarkoituksena on Pellin yhtälön ratkaiseminen ja aritmetiikan peruslauseen voimassaolon tutkiminen algebrallisten kokonaislukujen muodostamissa renkaissa \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\sqrt{-3}],\mathbb{Z} ... -
Reaalianalyyttistä lukuteoriaa
Ylinen, Henri (2016)Tämän tutkielman tarkoituksena on tutustuttaa lukija Bernoullin polynomeihin, Γ-funktioon ja lukuteoreettisiin Mertensin lauseisiin. Näiden lisäksi tutkitaan erästä lukuteoreettista tuloa, ja esitellään tähän tuloon ...