University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Kompleksilukujen lukuteoriaa ja lukuteoriaa kompleksiluvuilla

Thumbnail
View/Open
785.7 Kb

Downloads:  
Show download detailsHide download details  
Authors
Lindqvist, Ellinoora
Date
2019
Discipline
Matematiikan opettajankoulutusTeacher education programme in Mathematics
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

 
Tämän tutkielman tarkoituksena on näyttää, kuinka kokonaislukujen lukuteoriaa voidaan yleistää kokonaislukujen kompleksisille laajennuksille. Lisäksi halutaan osoittaa, että tilannetta voidaan tarkastella toisestakin suunnasta eli siitä, kuinka kokonaislukujen lukuteorian tuloksia voidaan todistaa kompleksilukujen avulla. Kokonaislukujen kompleksisista laajennuksista erityisen kiinnostuneita tutkielmassa ollaan Gaussin, Hurwitzin ja Eisensteinin kokonaisluvuista. Tutkielman alussa esitellään perusteellisesti Gaussin kokonaisluvut, jotka ovat tärkein tutkielmassa käytettävistä kokonaislukujen laajennuksista. Gaussin kokonaisluvuille näytetään ensin niiden algebrallisia ominaisuuksia, minkä jälkeen siirrytään lukuteoreettisiin ominaisuuksiin. Osoittautuu, että monet kokonaislukujen lukuteorian käsitteet ja tulokset, kuten alkuluvut, Eukleideen algoritmi, aritmetiikan peruslause ja Bézout'n lemma, voidaan yleistää Gaussin kokonaisluvuille. Tämän jälkeen vaihdetaan tarkastelusuuntaa. Tutustutaan kokonaislukujen lukuteorian tuloksiin ja niiden todistamiseen kokonaislukujen kompleksilaajennusten avulla. Ensimmäisenä annetaan tulos luonnollisen luvun esittämisestä kahden neliön summana. Tuloksen todistuksessa hyödynnetään Gaussin kokonaislukuja. Tämän jälkeen esitellään toinen kokonaislukujen kompleksisista laajennuksista, Hurwitzin kokonaisluvut. Niiden avulla todistetaan tulos luonnollisen luvun esittämisestä neljän neliön summana. Kolmantena todistettavana lukuteorian tuloksena esitellään eräs tapaus Fermat'n suuresta lauseesta. Todistusta varten perehdytään Eisensteinin kokonaislukuihin, jotka ovat viimeinen tutkielmassa esiteltävistä kokonaislukujen laajennuksista. Lopuksi kootaan yhteen tutkielmassa käytetyt kokonaislukujen laajennukset niiden geometrisen tulkinnan kautta. Samalla käsitellään lyhyesti tavallisten kokonaislukujen ja niiden kompleksisten laajennusten ulottuvuuksien määrää ja esitellään eräs siihen liittyvä toistaiseksi ratkaisematon ongelma. ...
Keywords
Gaussin kokonaisluvut Hurwitzin kokonaisluvut Eisensteinin kokonaisluvut Gaussin alkuluvut neliöiden summat Fermat'n suuri lause lukuteoria kokonaisluvut alkuluvut algoritmit luonnolliset luvut luvut kompleksiluvut
URI

http://urn.fi/URN:NBN:fi:jyu-201906263454

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [24542]

Related items

Showing items with similar title or keywords.

  • Lukuteoriaan perustuvia salausmenetelmiä 

    Rehn, Rasmus (2019)
    Tämän tutkielman tarkoitus on tutustuttaa lukija salakirjoituksen maailmaan lukuteorian näkökulmasta. Tutkielma sisältää salausmenetelmiin tarvittavat matemaattiset pohjatiedot, Diffie-Hellmanin salausmenetelmän ja ...
  • Alkulukuja ja melkein alkulukuja 

    Tuononen, Minna (2011)
  • Suhteellisten alkulukuparien todennäköisyys 

    Kosonen, Kati (2020)
    Tässä tutkielmassa osoitetaan, että kaksi satunnaisesti valittua kokonaislukua ovat keskenään suhteellisia alkulukuja 61% todennäköisyydellä. Tulosta lähestytään lukuteorian näkökulmasta erilaisten funktioiden ja niiden ...
  • Algebrallista lukuteoriaa : Pellin yhtälöstä ja aritmetiikan peruslauseen yleistämisestä 

    Ojaniemi, Jenna (2019)
    Tutkielman tarkoituksena on Pellin yhtälön ratkaiseminen ja aritmetiikan peruslauseen voimassaolon tutkiminen algebrallisten kokonaislukujen muodostamissa renkaissa \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\sqrt{-3}],\mathbb{Z} ...
  • Reaalianalyyttistä lukuteoriaa 

    Ylinen, Henri (2016)
    Tämän tutkielman tarkoituksena on tutustuttaa lukija Bernoullin polynomeihin, Γ-funktioon ja lukuteoreettisiin Mertensin lauseisiin. Näiden lisäksi tutkitaan erästä lukuteoreettista tuloa, ja esitellään tähän tuloon ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre