Näytä suppeat kuvailutiedot

dc.contributor.authorChugh, Tinkle
dc.contributor.authorRahat, Alma
dc.contributor.authorVolz, Vanessa
dc.contributor.authorZaefferer, Martin
dc.contributor.editorBartz-Beielstein, Thomas
dc.contributor.editorFilipič, Bogdan
dc.contributor.editorKorošec, Peter
dc.contributor.editorTalbi, El-Ghazali
dc.date.accessioned2019-06-19T08:40:40Z
dc.date.available2020-03-03T22:35:34Z
dc.date.issued2020
dc.identifier.citationChugh, T., Rahat, A., Volz, V., & Zaefferer, M. (2020). Towards Better Integration of Surrogate Models and Optimizers. In T. Bartz-Beielstein, B. Filipič, P. Korošec, & E.-G. Talbi (Eds.), <i>High-Performance Simulation-Based Optimization</i> (pp. 137-163). Springer. Studies in Computational Intelligence, 833. <a href="https://doi.org/10.1007/978-3-030-18764-4_7" target="_blank">https://doi.org/10.1007/978-3-030-18764-4_7</a>
dc.identifier.otherCONVID_31219603
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/64707
dc.description.abstractSurrogate-Assisted Evolutionary Algorithms (SAEAs) have been proven to be very effective in solving (synthetic and real-world) computationally expensive optimization problems with a limited number of function evaluations. The two main components of SAEAs are: the surrogate model and the evolutionary optimizer, both of which use parameters to control their respective behavior. These parameters are likely to interact closely, and hence the exploitation of any such relationships may lead to the design of an enhanced SAEA. In this chapter, as a first step, we focus on Kriging and the Efficient Global Optimization (EGO) framework. We discuss potentially profitable ways of a better integration of model and optimizer. Furthermore, we investigate in depth how different parameters of the model and the optimizer impact optimization results. In particular, we determine whether there are any interactions between these parameters, and how the problem characteristics impact optimization results. In the experimental study, we use the popular Black-Box Optimization Benchmarking (BBOB) testbed. Interestingly, the analysis finds no evidence for significant interactions between model and optimizer parameters, but independently their performance has a significant interaction with the objective function. Based on our results, we make recommendations on how best to configure EGO.fi
dc.format.extent291
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofHigh-Performance Simulation-Based Optimization
dc.relation.ispartofseriesStudies in Computational Intelligence
dc.rightsIn Copyright
dc.subject.otheroptimointifi
dc.subject.othermatemaattinen optimointifi
dc.subject.otherevoluutiolaskentafi
dc.subject.otheroptimisationfi
dc.subject.othermathematical optimisationfi
dc.subject.otherevolutionary computationfi
dc.titleTowards Better Integration of Surrogate Models and Optimizers
dc.typebook part
dc.identifier.urnURN:NBN:fi:jyu-201906173256
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.date.updated2019-06-17T12:15:28Z
dc.relation.isbn978-3-030-18763-7
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.description.reviewstatuspeerReviewed
dc.format.pagerange137-163
dc.relation.issn1860-949X
dc.relation.numberinseries833
dc.type.versionacceptedVersion
dc.rights.copyright© Springer Nature Switzerland AG 2020.
dc.rights.accesslevelopenAccessfi
dc.type.publicationbookPart
dc.subject.ysooptimointi
dc.subject.ysomatemaattinen optimointi
dc.subject.ysoevoluutiolaskenta
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p17635
jyx.subject.urihttp://www.yso.fi/onto/yso/p28071
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-030-18764-4_7
dc.type.okmA3


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright