Surrogate-Assisted Evolutionary Optimization of Large Problems
Chugh, T., Sun, C., Wang, H., & Jin, Y. (2020). Surrogate-Assisted Evolutionary Optimization of Large Problems. In T. Bartz-Beielstein, B. Filipič, P. Korošec, & E.-G. Talbi (Eds.), High-Performance Simulation-Based Optimization (pp. 165-187). Springer. Studies in Computational Intelligence, 833. https://doi.org/10.1007/978-3-030-18764-4_8
Julkaistu sarjassa
Studies in Computational IntelligencePäivämäärä
2020Tekijänoikeudet
© Springer Nature Switzerland AG 2020.
This chapter presents some recent advances in surrogate-assisted evolutionary optimization of large problems. By large problems, we mean either the number of decision variables is large, or the number of objectives is large, or both. These problems pose challenges to evolutionary algorithms themselves, constructing surrogates and surrogate management. To address these challenges, we proposed two algorithms, one called kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) for many-objective optimization, and the other called cooperative swarm optimization algorithm (SA-COSO) for high-dimensional single-objective optimization. Empirical studies demonstrate that K-RVEA works well for many-objective problems having up to ten objectives, while SA-COSA outperforms the state-of-the-art algorithms on 200-dimensional single-objective test problems.
Julkaisija
SpringerEmojulkaisun ISBN
978-3-030-18763-7Kuuluu julkaisuun
High-Performance Simulation-Based OptimizationISSN Hae Julkaisufoorumista
1860-949XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/31219792
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A surrogate-assisted a priori multiobjective evolutionary algorithm for constrained multiobjective optimization problems
Aghaei pour, Pouya; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2024)We consider multiobjective optimization problems with at least one computationally expensive constraint function and propose a novel surrogate-assisted evolutionary algorithm that can incorporate preference information ... -
Handling expensive multiobjective optimization problems with evolutionary algorithms
Chugh, Tinkle (University of Jyväskylä, 2017)Multiobjective optimization problems (MOPs) with a large number of conflicting objectives are often encountered in industry. Moreover, these problem typically involve expensive evaluations (e.g. time consuming simulations ... -
Towards Better Integration of Surrogate Models and Optimizers
Chugh, Tinkle; Rahat, Alma; Volz, Vanessa; Zaefferer, Martin (Springer, 2020)Surrogate-Assisted Evolutionary Algorithms (SAEAs) have been proven to be very effective in solving (synthetic and real-world) computationally expensive optimization problems with a limited number of function evaluations. ... -
Data-Driven Evolutionary Optimization : An Overview and Case Studies
Jin, Yaochu; Wang, Handing; Chugh, Tinkle; Guo, Dan; Miettinen, Kaisa (Institute of Electrical and Electronics Engineers, 2019)Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may ... -
A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization
Chugh, Tinkle; Jin, Yaochu; Miettinen, Kaisa; Hakanen, Jussi; Sindhya, Karthik (Institute of Electrical and Electronics Engineers, 2018)We propose a surrogate-assisted reference vector guided evolutionary algorithm (EA) for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.