Evolutionary Algorithms and Metaheuristics : Applications in Engineering Design and Optimization
Greiner, D., Periaux, J., Quagliarella, D., Magalhaes-Mendes, J., & Galván, B. (2018). Evolutionary Algorithms and Metaheuristics : Applications in Engineering Design and Optimization. Mathematical Problems in Engineering, 2018, Article 2793762. https://doi.org/10.1155/2018/2793762
Julkaistu sarjassa
Mathematical Problems in EngineeringTekijät
Päivämäärä
2018Tekijänoikeudet
© the Authors, 2018. This is an open access article distributed under the terms of the Creative Commons License.
Julkaisija
Hindawi Publishing CorporationISSN Hae Julkaisufoorumista
1024-123XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27859283
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Ellei muuten mainita, aineiston lisenssi on © the Authors, 2018. This is an open access article distributed under the terms of the Creative Commons License.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Algorithmic issues in computational intelligence optimization : from design to implementation, from implementation to design
Caraffini, Fabio (University of Jyväskylä, 2016)The vertiginous technological growth of the last decades has generated a variety of powerful and complex systems. By embedding within modern hardware devices sophisticated software, they allow the solution of complicated ... -
Handling expensive multiobjective optimization problems with evolutionary algorithms
Chugh, Tinkle (University of Jyväskylä, 2017)Multiobjective optimization problems (MOPs) with a large number of conflicting objectives are often encountered in industry. Moreover, these problem typically involve expensive evaluations (e.g. time consuming simulations ... -
Surrogate-Assisted Evolutionary Optimization of Large Problems
Chugh, Tinkle; Sun, Chaoli; Wang, Handing; Jin, Yaochu (Springer, 2020)This chapter presents some recent advances in surrogate-assisted evolutionary optimization of large problems. By large problems, we mean either the number of decision variables is large, or the number of objectives is ... -
Evolutionary design optimization with Nash games and hybridized mesh/meshless methods in computational fluid dynamics
Wang, Hong (University of Jyväskylä, 2012) -
A surrogate-assisted a priori multiobjective evolutionary algorithm for constrained multiobjective optimization problems
Aghaei pour, Pouya; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2024)We consider multiobjective optimization problems with at least one computationally expensive constraint function and propose a novel surrogate-assisted evolutionary algorithm that can incorporate preference information ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.