Show simple item record

dc.contributor.authorLovison, Alberto
dc.contributor.authorMiettinen, Kaisa
dc.contributor.editorEmmerich, Michael T. M.
dc.contributor.editorDeutz, André H.
dc.contributor.editorHille, Sander C.
dc.contributor.editorSergeyev, Yaroslav D.
dc.date.accessioned2019-06-11T07:25:47Z
dc.date.available2020-02-12T22:35:29Z
dc.date.issued2019
dc.identifier.citationLovison, A., & Miettinen, K. (2019). Exact extension of the DIRECT algorithm to multiple objectives. In M. T. M. Emmerich, A. H. Deutz, S. C. Hille, & Y. D. Sergeyev (Eds.), <i>LeGO 2018 : Proceedings of the 14th International Global Optimization Workshop</i> (Article 020053). American Institute of Physics. AIP Conference Proceedings, 2070. <a href="https://doi.org/10.1063/1.5090020" target="_blank">https://doi.org/10.1063/1.5090020</a>
dc.identifier.otherCONVID_28972908
dc.identifier.otherTUTKAID_80972
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/64508
dc.description.abstractThe direct algorithm has been recognized as an efficient global optimization method which has few requirements of regularity and has proven to be globally convergent in general cases. direct has been an inspiration or has been used as a component for many multiobjective optimization algorithms. We propose an exact and as genuine as possible extension of the direct method for multiple objectives, providing a proof of global convergence (i.e., a guarantee that in an infinite time the algorithm becomes everywhere dense). We test the efficiency of the algorithm on a nonlinear and nonconvex vector function.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.ispartofLeGO 2018 : Proceedings of the 14th International Global Optimization Workshop
dc.relation.ispartofseriesAIP Conference Proceedings
dc.rightsIn Copyright
dc.subject.othermonitavoiteoptimointifi
dc.subject.otheralgoritmitfi
dc.subject.othermulti-objective optimisationfi
dc.subject.otheralgorithmsfi
dc.titleExact extension of the DIRECT algorithm to multiple objectives
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-201905292875
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2019-05-29T09:15:23Z
dc.relation.isbn978-0-7354-1798-4
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.relation.issn0094-243X
dc.relation.numberinseries2070
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 Author(s).
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceInternational Global Optimization Workshop
dc.relation.grantnumber287496
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysoalgoritmit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1063/1.5090020
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThis research was partly funded by the Academy of Finland (grant no. 287496).
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright