A New Paradigm in Interactive Evolutionary Multiobjective Optimization
Saini, B. S., Hakanen, J., & Miettinen, K. (2020). A New Paradigm in Interactive Evolutionary Multiobjective Optimization. In T. Bäck, M. Preuss, A. Deutz, H. Wang, C. Doerr, M. Emmerich, & H. Trautmann (Eds.), PPSN 2020 : 16th International Conference on Parallel Problem Solving from Nature (pp. 243-256). Springer. Lecture Notes in Computer Science, 12270. https://doi.org/10.1007/978-3-030-58115-2_17
Julkaistu sarjassa
Lecture Notes in Computer ScienceToimittajat
Päivämäärä
2020Oppiaine
TietotekniikkaMultiobjective Optimization GroupLaskennallinen tiedePäätöksen teko monitavoitteisestiMathematical Information TechnologyMultiobjective Optimization GroupComputational ScienceDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© Springer Nature Switzerland AG 2020
Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving multiobjective optimization problems in an interactive manner by using multiple scalarization functions to map vectors in the objective space to a new, so-called preference incorporated space (PIS). In this way, the original problem is converted into a new multiobjective optimization problem with typically fewer objectives in the PIS. This mapping enables a modular incorporation of decision maker’s preferences to convert any evolutionary algorithm to an interactive one, where preference information is directing the solution process. Advantages of optimizing in this new space are discussed and the idea is demonstrated with two interactive evolutionary algorithms: IOPIS/RVEA and IOPIS/NSGA-III. According to the experiments conducted, the new algorithms provide solutions that are better in quality as compared to those of state-of-the-art evolutionary algorithms and their variants where preference information is incorporated in the original objective space. Furthermore, the promising results require fewer function evaluations.
...
Julkaisija
SpringerEmojulkaisun ISBN
978-3-030-58114-5Konferenssi
International Conference on Parallel Problem Solving From NatureKuuluu julkaisuun
PPSN 2020 : 16th International Conference on Parallel Problem Solving from NatureISSN Hae Julkaisufoorumista
0302-9743Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/36258380
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Profilointi, SALisätietoja rahoituksesta
This research was supported by the Academy of Finland (grant numbers 322221 and 311877). The research is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyväskylä.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
A Modified Preference-Based Hypervolume Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Liang, MaoMao; Shavazipour, Babooshka; Saini, Bhupinder; Emmerich, Michael; Miettinen, Kaisa (SCITEPRESS Science and Technology Publications, 2024)Various interactive evolutionary multiobjective optimization methods have been proposed in the literature for problems with multiple, conflicting objective functions. In these methods, a decision maker, who is a domain ... -
A General Architecture for Generating Interactive Decomposition-Based MOEAs
Lárraga, Giomara; Miettinen, Kaisa (Springer International Publishing, 2022)Evolutionary algorithms have been widely applied for solving multiobjective optimization problems. Such methods can approximate many Pareto optimal solutions in a population. However, when solving real-world problems, a ... -
Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
Afsar, Bekir; Ruiz, Ana B.; Miettinen, Kaisa (Springer Science+Business Media, 2023)Solving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise to direct the search for the most preferred trade-offs with preference information and learn about the ... -
Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Miettinen, Kaisa (ACM, 2022)Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.