Exact extension of the DIRECT algorithm to multiple objectives
Lovison, A., & Miettinen, K. (2019). Exact extension of the DIRECT algorithm to multiple objectives. In M. T. M. Emmerich, A. H. Deutz, S. C. Hille, & Y. D. Sergeyev (Eds.), LeGO 2018 : Proceedings of the 14th International Global Optimization Workshop (Article 020053). American Institute of Physics. AIP Conference Proceedings, 2070. https://doi.org/10.1063/1.5090020
Julkaistu sarjassa
AIP Conference ProceedingsPäivämäärä
2019Tekijänoikeudet
© 2019 Author(s).
The direct algorithm has been recognized as an efficient global optimization method which has few requirements of regularity and has proven to be globally convergent in general cases. direct has been an inspiration or has been used as a component for many multiobjective optimization algorithms. We propose an exact and as genuine as possible extension of the direct method for multiple objectives, providing a proof of global convergence (i.e., a guarantee that in an infinite time the algorithm becomes everywhere dense). We test the efficiency of the algorithm on a nonlinear and nonconvex vector function.
Julkaisija
American Institute of PhysicsEmojulkaisun ISBN
978-0-7354-1798-4Konferenssi
International Global Optimization WorkshopKuuluu julkaisuun
LeGO 2018 : Proceedings of the 14th International Global Optimization WorkshopISSN Hae Julkaisufoorumista
0094-243XJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28972908
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This research was partly funded by the Academy of Finland (grant no. 287496).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the Extension of the DIRECT Algorithm to Multiple Objectives
Lovison, Alberto; Miettinen, Kaisa (Springer Science and Business Media LLC, 2021)Deterministic global optimization algorithms like Piyavskii–Shubert, DIRECT, EGO and many more, have a recognized standing, for problems with many local optima. Although many single objective optimization algorithms have ... -
A surrogate-assisted a priori multiobjective evolutionary algorithm for constrained multiobjective optimization problems
Aghaei pour, Pouya; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2024)We consider multiobjective optimization problems with at least one computationally expensive constraint function and propose a novel surrogate-assisted evolutionary algorithm that can incorporate preference information ... -
A New Paradigm in Interactive Evolutionary Multiobjective Optimization
Saini, Bhupinder Singh; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2020)Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving ... -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
Multilayer perceptron training with multiobjective memetic optimization
Nieminen, Paavo (University of Jyväskylä, 2016)Machine learning tasks usually come with several mutually conflicting objectives. One example is the simplicity of the learning device contrasted with the accuracy of its performance after learning. Another common example ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.