Exact extension of the DIRECT algorithm to multiple objectives
Lovison, A., & Miettinen, K. (2019). Exact extension of the DIRECT algorithm to multiple objectives. In M. T. M. Emmerich, A. H. Deutz, S. C. Hille, & Y. D. Sergeyev (Eds.), LeGO 2018 : Proceedings of the 14th International Global Optimization Workshop (Article 020053). American Institute of Physics. AIP Conference Proceedings, 2070. https://doi.org/10.1063/1.5090020
Published in
AIP Conference ProceedingsDate
2019Copyright
© 2019 Author(s).
The direct algorithm has been recognized as an efficient global optimization method which has few requirements of regularity and has proven to be globally convergent in general cases. direct has been an inspiration or has been used as a component for many multiobjective optimization algorithms. We propose an exact and as genuine as possible extension of the direct method for multiple objectives, providing a proof of global convergence (i.e., a guarantee that in an infinite time the algorithm becomes everywhere dense). We test the efficiency of the algorithm on a nonlinear and nonconvex vector function.
Publisher
American Institute of PhysicsParent publication ISBN
978-0-7354-1798-4Conference
International Global Optimization WorkshopIs part of publication
LeGO 2018 : Proceedings of the 14th International Global Optimization WorkshopISSN Search the Publication Forum
0094-243XPublication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28972908
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
This research was partly funded by the Academy of Finland (grant no. 287496).License
Related items
Showing items with similar title or keywords.
-
On the Extension of the DIRECT Algorithm to Multiple Objectives
Lovison, Alberto; Miettinen, Kaisa (Springer Science and Business Media LLC, 2021)Deterministic global optimization algorithms like Piyavskii–Shubert, DIRECT, EGO and many more, have a recognized standing, for problems with many local optima. Although many single objective optimization algorithms have ... -
Sensor placement in water distribution networks using centrality-guided multi-objective optimisation
Diao, Kegong; Emmerich, Michael; Lan, Jacob; Yevseyeva, Iryna; Sitzenfrei, Robert (IWA Publishing, 2024)This paper introduces a multi-objective optimisation approach for the challenging problem of efficient sensor placement in water distribution networks for contamination detection. An important question is, how to identify ... -
A surrogate-assisted a priori multiobjective evolutionary algorithm for constrained multiobjective optimization problems
Aghaei pour, Pouya; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2024)We consider multiobjective optimization problems with at least one computationally expensive constraint function and propose a novel surrogate-assisted evolutionary algorithm that can incorporate preference information ... -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
A New Paradigm in Interactive Evolutionary Multiobjective Optimization
Saini, Bhupinder Singh; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2020)Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving ...