Voiko vähästä oppia : koneoppimisen haasteet pienellä aineistolla
Tämä kandidaatintutkielma käsittelee koneoppimista pienellä aineistolla. Koneoppimisessa kone parantaa suorituskykyään jonkin tietyn tehtävän ratkaisemiseksi itsenäisesti sitä mukaa kun lisää kokemusta tai dataa kertyy. Koneoppimisongelmat voidaan jakaa luokittelu- ja regressio-ongelmiin. Yleensä koneoppimistehtävät vaativat ison aineiston tarkan koneoppimismallin opettamiseksi, mutta usein kattavan aineiston hankkiminen muodostuu ongelmaksi. Tämän tutkielman tavoitteena on käydä läpi minkälaisia ongelmia koneoppimismallin opetuksessa ilmenee kun käytettävissä on pieni aineisto ja esitellä ratkaisuja näihin ongelmiin. Tutkielma tehtiin kirjallisuuskatsauksena. Tutkitut julkaisut käsittelivät edellä mainittuja ongelmia, sekä niihin kehiteltyjä ratkaisuja. Tutkielmassa selvisi, että pienellä aineistolla on haastavampaa opettaa hyvin yleistyvää koneoppimismallia, ja ylisovittumisen välttäminen on vaikeaa. Yleistymisen parantamiseksi esitellään keinotekoista lisädataa generoiva SMOTE-tekniikka, ja ylisovittumista yritetään saada kuriin regularisoinnin avulla
...
This bachelor’s thesis deals with machine learning with little data. In machine
learning, the machine improves its performance to solve a specific task independently as
more experience or data accumulates. Machine learning problems can be divided into classification and regression problems. Usually, machine learning tasks require large data to train an accurate machine learning model, but often obtaining large enough data is problematic. The aim of this thesis is to review the problems encountered in training a machine learning model when there is only little data available and solutions to these problems. The thesis was made as a literature review. The publications examined deal with the above-mentioned problems, as well as the solutions developed for them. In the thesis it became clear that it is more challenging to teach a machine learning model that generalizes well with little material, and it is difficult to avoid overfitting. In order to generalize better, we examine SMOTE technology to generate synthetic data and to prevent overfitting we talk about regularization.
...
Metadata
Show full item recordCollections
- Kandidaatintutkielmat [5358]
License
Related items
Showing items with similar title or keywords.
-
Koneoppimisen mahdollisuudet lääketieteellisessä diagnostiikassa
Riipinen, Tommi (2018)Eksponentiaalisesti kasvavan datamassan, kasvaneen laskentatehon ja jatkuvasti kehittyvien algoritmien ansiosta koneoppimismenetelmien hyötypotentiaali lisääntyy jatkuvasti lääketieteellisen päätöksenteon tukena. ... -
Koneoppimisen hyödyntäminen esineiden internetin kyberturvallisuudessa
Kattelus, Eetu (2023)Esineiden internet koostuu toisiinsa verkon välityksellä kommunikoivista laitteista. Kyberturvallisuus näissä laitteissa on usein riittämätön, mikä olisi tärkeää saada ajan tasalle laitteiden alati kasvavan määrän vuoksi. ... -
Koneoppimisen hyödyntäminen metsä- ja maastopalojen havaitsemisessa droneilmakuvista
Tarvainen, Anni (2023)Kandidaatintutkielmassa käsitellään koneoppimisalgoritmien hyödyntämistä metsä- ja maastopalojen havaitsemiseen droneilmakuvista. Tutkielma on kirjallisuuskatsaus, ja sen tavoitteena on pohtia, kuinka toimiva ratkaisu ... -
Koneoppimisen hyödyntäminen videopeleissä
Saarimaa, Jose (2021)Tässä kandidaattitutkielmassa käsitellään koneoppimisen hyödyntämistä videopeleissä kirjallisuuskatsauksen muodossa. Ensiksi perehdytään siihen, millainen ympäristö pelit ovat koneoppimisen soveltamiselle ja erityisesti ... -
Koneoppimisen hyödyntäminen kyberhyökkäysten havaitsemisessa ja torjunnassa
Seppänen, Henrik (2020)Tekoäly on noussut yhdeksi nykypäivän puhutuimmista uusista teknologioista. Tekoälyyn kuuluva koneoppiminen on ollut jo kauan tutkimuksen kohteena. Lähivuosina tekoälyn noustessa pinnalle, on myös koneoppimisteknologian ...